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Abstract

A principal must decide between two options. Which one she prefers depends on the

private information of two agents. One agent always prefers the first option; the other

always prefers the second. Transfers are infeasible. One application of this setting is

the efficient division of a fixed budget between two competing departments. We first

characterize all implementable mechanisms under arbitrary correlation. Second, we

study when there exists a mechanism that yields the principal a higher payoff than she

could receive by choosing the ex-ante optimal decision without consulting the agents.

In the budget example, such a profitable mechanism exists if and only if the information

of one department is also relevant for the expected returns of the other department.

We generalize this insight to derive necessary and sufficient conditions for the existence

of a profitable mechanism in the n-agent allocation problem with independent types.
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1 Introduction

A principal has to decide between two options. Which one she prefers depends on the private

information of two agents. One agent always prefers the first option; the other always prefers

the second. Transfers are infeasible. The principal designs and commits to a mechanism: a

mapping from reported information profiles to a – potentially randomized – decision. One

prominent example of a setting without transfers is the allocation of a fixed amount of money:

Example 1 (Budget allocation). Upper management has endowed a division manager with

a fixed budget. She can divide these funds between her two departments L,R. Her objective is

to maximize expected returns. Department heads i = ℓ, r hold private information θi about the

future marginal returns yL, yR and want to maximize their department’s budget. Formally,

(θℓ, θr, yL, yR) follows some joint distribution and conditional on the private information the

manager’s marginal return from allocating 1$ to L is v(θℓ, θr) = E[yL − yR|θℓ, θr].

To the best of our knowledge this is the first paper that characterizes all implementable

mechanisms without transfers under arbitrary correlation. We find a connection between

our mechanism design setting and a zero-sum game. Incentive compatibility of a mechanism

given a type distribution corresponds to this distribution being a correlated equilibrium in

the game induced by the mechanism.

Crémer and McLean’s (1985; 1988) results for the corresponding setting with transfers

suggest that the principal should be able to exploit correlation to induce truthful reporting.

We define a preorder on type distributions and find that correlation has the opposite effect

in our setting: it restricts the set of implementable mechanisms. Under their full-rank

condition the set of implementable mechanisms collapses completely and the principal can

never do better than choosing her ex-ante preferred option. We give necessary and sufficient

conditions for the existence of a “profitable” mechanism that allows the principal to do

better. When she is ex-ante indifferent the existence of a profitable mechanism is equivalent

to a non-additive payoff structure. When she is not ex-ante indifferent a key insight is that

choosing a mechanism corresponds to introducing endogenous correlation. Existence of a

profitable mechanism depends on the value of a related optimal transport problem in which

the principal chooses this endogenous correlation structure. Incentive constraints translate

into an equal marginals condition and an orthogonality constraint between the exogenously

given type distribution and the endogenously chosen one.

One application of our results is the problem of allocating a single nondisposable good

between two agents. In section 6, we extend our setting and study the problem of allocating

a (potentially disposable) good among n agents under independence. When the good has to

be allocated, we find that a profitable mechanism exists if and only if a generalized version
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of the additivity condition is violated. Under free disposal, a profitable mechanism exists if

and only if there is an agent such that the principal’s value from allocating to that agent

depends on the types of other agents.

More broadly, our results convey that there is large class of settings without transfers

where the principal can profit from designing a mechanism that elicits the agent’s infor-

mation despite their opposed interests. This scope for communication does not rely on any

correlation of the agents’ information but instead on types interdependence in the principal’s

preferences.

2 Model

There is a principal, two agents i = ℓ, r and a decision: L or R. Agent ℓ always prefers

L; agent r always prefers R. Agents enjoy utility 1 if their favored decision is taken and

0 otherwise.1 Each agent has a private type θi ∈ Θi ( |Θi| < ∞) and the type profile

θ = (θℓ, θr) is drawn from a commonly known distribution π(θℓ, θr) with positive2 marginals

πℓ, πr. Let Π be the set of joint type distributions with positive marginals and let Π(πℓ, πr)

be the set of joint type distributions with marginals πi. The independent type distribution

with marginals πi is denoted by πℓπr.

The principal designs and commits to a mechanism. By the revelation principle she can

restrict attention to direct, incentive-compatible3 mechanisms x : Θ = Θℓ × Θr → [0, 1],

where x(θℓ, θr) denotes the probability that L is chosen if agent ℓ reports θℓ and agent r

reports θr. From now on we refer to direct mechanisms simply as mechanisms.

If the realized type profile is θ then the principal receives a payoff of vL(θ) from L and

of vR(θ) from R, her (without loss) ex-ante preferred option. We normalize vR = 0 so that

Eπ[vL(θ)] ≤ 0.4 From now on we denote vL = v.

The principal’s problem then reads:

max
0≤x(θ)≤1

Eπ[v(θ)x(θ)]

s.t. Eπ[x(θℓ, θr)|θℓ] ≥ Eπ[x(θ
′
ℓ, θr)|θℓ] ∀θℓ, θ

′
ℓ (ICℓ)

Eπ[x(θℓ, θr)|θr] ≤ Eπ[x(θℓ, θ
′
r)|θℓ] ∀θr, θ

′
r (ICr)

Given π ∈ Π, let the set of IC mechanisms be X (π). A mechanism is said to be profitable

1All of our results would apply unchanged if agents receive utility ūi(θi) from their preferred decision and
utility ui(θi) from their less preferred decision, where ūi > ui.

2This is without loss. Note that we do not assume full support.
3More precisely: Bayesian IC. In this setting, the only ex-post IC mechanisms are constant mechanisms.
4Bold symbols denote random variables.
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if it is IC and yields the principal a strictly greater payoff than choosing her ex-ante preferred

option R without consulting the agents. Given our normalization of the principal’s payoff,

an IC mechanism x is profitable if and only if Eπ[v(θ)x(θ)] > 0.

3 Implementation

In this section we characterize the set of IC mechanisms given a type-distribution. The

proof is based on the observation that incentive-compatibility can be phrased in terms of the

correlated equilibria of an auxiliary two-player zero-sum game.

Let π ∈ Π and let x be an IC mechanism. The IC conditions read

∑

θr

π(θr|θℓ)x(θℓ, θr) ≥
∑

θr

π(θr|θℓ)x(θ
′
ℓ, θr) ∀ θℓ, θ

′
ℓ (IC ′

ℓ)

∑

θℓ

π(θℓ|θr)x(θℓ, θr) ≤
∑

θℓ

π(θℓ|θr)x(θℓ, θ
′
r) ∀ θr, θ

′
r. (IC ′

r)

Consider now the auxiliary two-player zero-sum game G in which the Maximizer chooses

θℓ, the Minimizer chooses θr and the objective (i.e. the Maximizer’s payoff if θℓ and θr is

chosen) is x(θℓ, θr). In this game we can interpret π as a correlated strategy under which the

Maximizer’s payoff is
∑

θℓ

∑

θr
π(θℓ, θr)x(θℓ, θr). With this interpretation the IC conditions

become obedience conditions and π becomes a correlated equilibrium of G:

Lemma 1. A mechanism x is IC under some type distribution π ∈ Π if and only if π is

a correlated equilibrium of the auxiliary two-player zero-sum game in which the Maximizer

chooses θℓ ∈ Θℓ, the Minimizer chooses θr ∈ Θr and the Maximizer’s payoff is x(θℓ, θr).

Note that under the mechanism design interpretation π is an exogenous part of the

environment while x is endogenous. In the auxiliary game the roles are exactly flipped: x is

an exogenous while π is endogenous.

Proposition 1. Let π ∈ Π and let x be some mechanism. The following are equivalent.

(i) x is IC under π.

(ii) For each type θi of each agent i, Eπ[x(θ
′
i, θ−i)|θi] = Eπ[x(θ)], for any report θ′i.

Moreover, if x is IC then Eπ[x(θ)] = x̄, where x̄ = max
σℓ∈∆Θℓ

min
σr∈∆Θr

∑

θℓ

∑

θr

σℓ(θℓ)σr(θr)x(θℓ, θr)

is the maximin value of the auxiliary game.
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Proposition 1 says that a mechanism is IC if and only if each type of each agent is

indifferent between every possible report and each type’s expectations of x are given by the

distribution-independent constant x̄.

Proof. Any mechanism that satisfies (ii) is clearly IC. To show the converse let π ∈ Π and

let x be an IC mechanism. By Lemma 1, π is a correlated equilibrium of the auxiliary game

G in which the Maximizer chooses θℓ, the Minimizer chooses θr and the Maximizer’s payoff

from such an action profile is x(θℓ, θr).

Suppose now that the Minimizer obeys while the Maximizer ignores his recommendation

under π and instead plays the mixed strategy πℓ. As this cannot be profitable to him we get

∑

θℓ

∑

θr

π(θℓ, θr)x(θℓ, θr) ≥
∑

θℓ

∑

θr

π(θℓ, θr)
∑

θ′
ℓ

πℓ(θ
′
ℓ)x(θ

′
ℓ, θr).

But the last term is simply
∑

θℓ

∑

θr
πℓ(θℓ)πr(θr)x(θℓ, θr) and so we obtain

∑

θℓ

∑

θr

π(θℓ, θr)x(θℓ, θr) ≥
∑

θℓ

∑

θr

πℓ(θℓ)πr(θr)x(θℓ, θr). (1)

The symmetric argument for the Minimizer implies that the opposite inequality to (1) must

also hold. We conclude that (1) must hold with equality. Finally, since πℓ has full support

if there were some pair θℓ, θ
′
ℓ for which the inequality in the obedience constraint (IC ′

ℓ) were

strict then (1) could not hold with equality. Hence (IC ′
ℓ) and (IC ′

r) must always bind.

Thus, if player i is recommended some action θi then he is indifferent between all actions

and his interim expectation of x is x̄i(θi) = Eπ[x(θ)|θi]. We will now show that the interim

expectations x̄i(θi) are actually all the same.

Let σ = (σℓ, σr) be a Nash equilibrium of G and let x̄ =
∑

θℓ
σℓ(θℓ)

∑

θr
σr(θr)x(θℓ, θr) be

the Maximizer’s expected payoff under σ. Then for any θr it holds that

x̄ ≥
∑

θℓ

π(θℓ|θr)
∑

θ̃r

σr(θ̃r)x(θℓ, θ̃r) =
∑

θ̃r

σr(θ̃r)
∑

θℓ

π(θℓ|θr)x(θℓ, θ̃r)

≥
∑

θℓ

π(θℓ|θr)x(θℓ, θr) = x̄r(θr),

where the first inequality holds since the mixed strategy π(·|θr) is not a profitable deviation

from σℓ; the second inequality follows from type θr’s IC constraint for θ̃r and the last equality

is by definition. Combining this inequality with the corresponding inequality for the other

player we thus have that

x̄r(θr) ≤ x̄ ≤ x̄ℓ(θℓ) ∀θℓ, θr.
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Since the terms on the left and the right hand side of the above inequalities are equal in

expectation and all θℓ and θr occur with positive probability both inequalities above must

always bind. That is to say, for each agent i, Eπ[x(θ
′
i, θ−i)|θi] = x̄ for any θi and θ′i. Finally,

note that x̄ = maxσℓ∈∆Θℓ
minσr∈∆Θr

∑

θℓ

∑

θr
σℓ(θℓ)σr(θr)x(θℓ, θr) holds since (σℓ, σr) is a

Nash equilibrium of the zero sum game G.

4 Comparative statics for implementation

In this section, we study how the set of implementable mechanisms depends on the type

distribution. We define a preorder on distributions and derive a monotone comparative stat-

ics result for the correspondence π 7→ X (π). We conclude that correlation has a restrictive

effect.

Definition 1. Let τ 0, τ 1, . . . , τk ∈ ∆Θ−i be any beliefs over types of agent −i. Then

{τ 1, . . . , τk} is said to span τ 0 if there exist coefficients αj ∈ R such that

τ 0(θ−i) =
k∑

j=1

τ j(θ−i)αj ∀θ−i.

Given joint type distributions π, π̃ ∈ Π, π is said to span π̃ if for all θi, {π(·|θ̃i) : θ̃i ∈ Θi}

spans π̃(·|θi), i = ℓ, r.

Hence π spans π̃ if each interim belief an agent can hold under π̃ is a linear combination

of some interim beliefs that he can hold under π. Spanning is reflexive and transitive but

not anti-symmetric and therefore defines a preorder.

Example 2. Let π ∈ Π with marginals πi. Then π spans the independent type distribution

π̃ = πℓπr because

πi(θi) =
∑

θ−i

π(θi|θ−i)π−i(θ−i) ∀θi∀i.

Example 3. A joint distribution π ∈ Π spans every other joint distribution π̃ ∈ Π if and

only if the matrix (π(θℓ, θr)) ∈ R
Θℓ×Θr has full column-rank and full row-rank. This is exactly

the condition introduced by Crémer and McLean (see Assumption 4 in their 1985 paper and

Theorem 1 in their 1988 paper).

Our first application of the spanning relation shows that the set of IC mechanisms cannot

shrink when passing from π to some other type distribution π̃ that is spanned by π.
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Proposition 2. Let π, π̃ ∈ Π be type distributions. If π spans π̃ then

X (π) ⊂ X (π̃).

Proof. By Proposition 1 a mechanism x is IC under π if and only if

∑

θ−i

π(θ−i|θi)(x(θ
′
i, θ−i)− x̄) = 0 ∀θi, θ

′
i, i = ℓ, r.

Now let x be IC under π and consider some π̃ ∈ Π spanned by π. By definition, there exist

coefficients αi(θi, θ̃i) such that

π̃(θ−i|θi) =
∑

θ̃i

π(θ−i|θ̃i)αi(θi, θ̃i) ∀θi, θ−i, i = ℓ, r.

But then x must also be IC under π̃ because for all θi, θ
′
i:

∑

θ−i

π̃(θ−i|θi)(x(θ
′
i, θ−i)− x̄) =

∑

θ̃i

αi(θi, θ̃i)
∑

θ−i

π(θ−i|θ̃i)(x(θ
′
i, θ−i)− x̄) = 0.

The proof (appendix) of the next result is another application of the spanning relation.

Proposition 3. Let π ∈ Π with marginals πi and let x be some mechanism. Then:

1. If x is IC under π then x is also IC under the independent type distribution π̃ = πℓπr.

2. If the matrix (π(θℓ, θr)) ∈ R
Θℓ×Θr has full rank then only constant mechanisms are IC.

The maximal elements of the spanning preorder are exactly the full-rank distributions and its

minimal elements are exactly the independent distributions.

Crémer and McLean (1985) show in a setting with transfers that full rank correlation

makes it possible to implement any allocation rule while paying zero information rents.5

5The full-rank condition is often seen as generic. In many applications, though, it is not satisfied even when
types are correlated. For example, assume that there exists a finite underlying state of the world ω ∈ {1, . . . k}
such that θℓ and θr are independent given ω. That is, π(θℓ, θr|ω) = πℓ(θℓ|ω)πr(θr|ω) ∀θℓ, θr, ω. Then

π(θℓ, θr) =

k∑

ω=1

πℓ(θℓ|ω)πr(θr|ω) Pr(ω).

and so each column π(·, θr) of the matrix (π(θℓ, θr))θℓ,θr is a linear combination of the k vectors πℓ(·|ω),
ω = 1, . . . , k (with coefficients αθr (ω) = πr(θr|ω) Pr(ω)). Hence rank(π) ≤ k.
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We show that under the same full-rank condition only mechanisms that ignore the agents’

reports are IC. Absent full rank correlation, any mechanism that is IC under correlation must

also be IC when types are independent. This shows that the spirit of Crémer and McLean’s

results is inverted in our setting. The next example illustrates this difference.

Example 4. Assume Θℓ = Θr = {−1, 1}, πℓ = πr =
1
2
and v(θ) = θℓθr. Both options yield

the principal an ex-ante expected payoff of 0 while the first best mechanism x∗ would choose

L iff θℓ = θr and yield E[v(θ)x∗(θ)] = 1
2
> 0. If types are independent then x∗ is actually

IC because from each agent’s perspective, any report will lead to the same probability of L.

Now assume instead that types are correlated and that π is given by

−1 1

−1 0.25− ε 0.25 + ε

1 0.25 + ε 0.25− ε

where 0 < ε ≤ 1
4
is arbitrary. Then x∗ is not IC anymore: For example, type 1 of agent

ℓ would infer from his type that the other agent’s type is probably −1 and would therefore

claim to be type −1 instead of being truthful. Since the distribution matrix has full rank,

Proposition 3 shows that the only remaining IC mechanisms are constant.

This example also illustrates how more correlated distributions make implementation

harder because agents become more informed about each other’s types.

5 Profitable mechanisms

In this section we investigate when the principal can design a profitable mechanism. We

attack this question from two different angles. Our first characterization is in terms of the

principal’s objective and applies when the principal is ex-ante indifferent between the two op-

tions. The second characterization is in terms of a related optimal transport problem. It also

yields an explicit characterization of incentive-compatible mechanisms under independence.

5.1 The role of the objective

Definition 2. The principal’s objective is said to be additive if there exist functions vi : Θi →

R such that

v(θℓ, θr) = vℓ(θℓ) + vr(θr) ∀θℓ, θr.
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Given π ∈ Π the objective is said to be π-additive if there exist coefficients λℓ(θℓ, θ̃ℓ),

λr(θr, θ̃r) ∈ R such that

v(θℓ, θr)π(θℓ, θr) =
∑

θ̃ℓ

λℓ(θℓ, θ̃ℓ)π(θr|θ̃ℓ) +
∑

θ̃r

λr(θr, θ̃r)π(θℓ|θ̃r) ∀θℓ, θr. (2)

Additivity is a special case of π-additivity (take λi(θi, θ̃i) = vi(θi)πi(θ̃i)1(θ̃i=θi)
) and it is

easily seen that the two concepts coincide when π = πℓπr. To interpret π-additivity let the

type distribution by π ∈ Π and consider some mechanism x. When v is π-additive we then

get from (2) that

Eπ[v(θ)x(θ)] =
∑

θℓ,θ̃ℓ

λℓ(θℓ, θ̃ℓ)Eπ[x(θℓ, θr)|θ̃ℓ] +
∑

θr ,θ̃r

λr(θℓ, θ̃r)Eπ[x(θℓ, θr)|θ̃r]

so that Eπ[v(θ)x(θ)] is a linear combination of the potential expected payoffs Eπ[x(θi, θ−i)|θ̃i]

of types θ̃i from any (mis-)report θi. If x is IC then Eπ[v(θ)x(θ)] is the principal’s expected

payoff from x and the “misreporting expectations” must all coincide with the maximin value

x̄. Hence replacing x by the constant mechanism x̃ ≡ x̄ does not change the principal’s

payoff and x cannot be profitable. A necessary condition for the existence of a profitable

mechanism is thus that the principal’s objective is not π-additive. If the principal is ex-ante

indifferent between L and R then this condition is also sufficient

Proposition 4. Let types be distributed according to π ∈ Π. A profitable mechanism can

exist only if the principal’s objective is not π-additive. If Eπ[v(θ)] = 0 then a profitable

mechanism exists if and only if the principal’s objective is not π-additive. In particular,

if types are independent then a profitable mechanism exists if and only if the principal’s

objective is not additive.

The proof (appendix) works by projecting vπ on the linear subspace U of functions that

can be expressed in the form of the right hand side of (2). Given ex-ante indifference the

principal’s expected payoff in an IC mechanism depends only on the part of vπ that is

orthogonal to U . We construct a mechanism that yields a strictly positive payoff whenever

this projection residual is nonzero.

Example 1 (continued). Consider again the budget allocation problem. Recall that

v(θℓ, θr) = E[yL − yR|θℓ, θr] = E[yL|θℓ, θr]− E[yR|θℓ, θr].

Let hi(θℓ, θr) = E[yi|θi, θ−i]. If hi(θℓ, θr) depends only on θi then Proposition 4 implies that

there does not exist a profitable mechanism. Hence a necessary condition for the existence of

9



a profitable mechanism is that at least one department head has information that is relevant

to the future return of the other department. Now assume that types are iid and that hℓ =

hr = h. Then E[yℓ] = E[h(θℓ, θr)] = E[h(θr, θℓ)] = E[yr] so that the principal is ex-ante

indifferent. Then a profitable mechanism exists if, and only if h(θℓ, θr) − h(θr, θℓ) is not

additive.

5.2 The role of correlation

Correlation between agent-types affects the principal through two distinct channels. Firstly,

correlation affects the set of mechanisms in which agents find it optimal to be truthful (see

Section 4). Secondly, fixing a mechanism and assuming that agents are truthful, correlation

can increase or decrease the principal’s expected payoff by concentrating more mass on

specific type profiles. In this section we show that the principal’s problem can be viewed as

a problem of choosing an “optimal correlation structure”.

We start by reinterpreting incentive-compatibility. The proof is in the appendix.

Lemma 2. Let the type distribution be π ∈ Π. A mechanism x is IC if and only if

1. Agents are ex-ante indifferent between reports: Eπ[x(θ
′
i, θ−i)] = Eπ[x(θ

′′
i , θ−i)] ∀θ′i, θ

′′
i ∀i

2. Their type realizations are uninformative: Eπ[x(θ
′
i, θ−i)|θi] = Eπ[x(θ

′
i, θ−i)] ∀θi, θ

′
i ∀i.

Ex-ante indifference is equivalent to IC under the independent type distribution πℓπr.

Uninformativeness implies that agents cannot gain any payoff-relevant information from

their type about their opponent’s type. Note that this is automatically satisfied if types are

independent. Correlation therefore restricts the set of IC mechanisms by making the agents

more informed which adds additional incentive-constraints. From this perspective, IC under

correlation lies mid-way between IC under independence and IC under full information.

Lemma 2 allows us to derive a necessary and sufficient criterion for the existence of a

profitable mechanism. We need the following definition.

Definition 3. Two joint type distributions π, π̃ ∈ Π(πℓ, πr) with the same marginals πi > 0

are said to be orthogonal if

Cov(π(θi|θ−i), π̃(θ
′
i|θ−i)) = 0 ∀θi, θ

′
i ∀i.

Hence π and π̃ are orthogonal if the random variables π(θi|θ−i) and π̃(θ′i|θ−i) are uncor-

related for all θi, θ
′
i, i = ℓ, r. Note that

Cov(π(θi|θ−i), π̃(θ
′
i|θ−i)) =

∑

θ−i

[π(θi|θ−i)− πi(θi)][π̃(θ
′
i|θ−i)− πi(θ

′
i)]π−i(θ−i)

10



and π(θi|θ−i) − πi(θi) is the update of type θ−i about the probability of type θi under π.

Clearly, if one of π or π̃ is the independent type distribution πlπr then orthogonality is

automatically satisfied. Otherwise the condition says that for all θi, θ
′
i, the vector π(θi|·) −

πi(θi) ∈ R
Θ−i of possible belief updates of agent −i about the probability of type θi under π

must be orthogonal to the vector of updates π̃(θ′i|·)− πi(θi) ∈ R
Θ−i about the probability of

θ′i under π̃ under the inner product 〈a, b〉 =
∑

θ−i
a(θ−i)b(θ−i) on R

Θ−i .

The next result shows that the problem of finding a profitable mechanism is intricately

related to the choice of an “optimal correlation strucuture”: A profitable mechanism exists

if and only if it is possible to find some alternative correlation structure that is orthogonal

to the exogenously given one and such that — under the alternative correlation structure

(and with a suitably transformed objective) — L becomes the principal’s ex-ante strictly

preferred option. This can be phrased as a constrained optimal transport problem.6

Proposition 5. Let the type distribution be π ∈ Π and denote its marginals by πi. Let

v̂ = vπ/πℓπr. A profitable mechanism exists if and only if

(

max
π̃∈Π(πℓ,πr)

Eπ̃[v̂(θ)] s.t. π̃ is orthogonal to π

)

> 0. (3)

In particular, if types are independent then a profitable mechanism exists if, and only if

max
π̃∈Π(πℓ,πr)

Eπ̃[v(θ)] > 0.

To explain how the constrained optimal transport problem in Proposition 5 is related

to the principal’s problem let x be some mechanism. Together with π, x induces a density

g(θ) = π(θ)x(θ) = π(θ)
πℓ(θℓπr(θr)

f(θ) of a measure on Θ whose “correlation structure” depends

on an exogenous part π
πℓπr

and an endogenous part f . Instead of in terms of mechanisms,

the principal’s problem can also be phrased in terms of f . Requiring ex-ante indifference

for the agents then translates into requiring that f should be a nonnegative multiple of

some probability distribution π̃ ∈ Π with the same marginals as π: f = qπ̃ (q ∈ [0, 1]).

Uninformativeness translates into π̃ being orthogonal to π. Under this reparametrization

the principal’s objective becomes qEπ̃[v̂(θ)] and the (upper) feasibility constraint on the

mechanism becomes a correlation constraint: q π̃
πℓπr

≤ 1. If there is a profitable π̃ then

the principal therefore faces a tradeoff between up-scaling her objective (by increasing q)

and the ability to concentrate more mass on type profiles with a positive objective value

(by decreasing q). The mere existence of a profitable π̃ does not depend on the correlation

constraint, however, and after dropping this constraint and dividing everything by q we

6For an in-depth treatment of optimal transport see Villani (2009).
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arrive at the formulation in Proposition 5.

The proof of the above proposition (in the appendix) yields another characterization of

incentive compatible mechanisms when types are independent.

Corollary 1. If types are independent then a mechanism x is IC if and only if there exist

nonnegative coefficients {γj}
k
j=1 (k ≥ 0) and extreme points7 πj of Π(πℓ, πr) such that

x =

k∑

j=1

πj

πℓπr

γj.

Consider an example where both agents have the same number of types (without loss

Θℓ = Θr) and where marginals are uniform. Together with the Birkhoff-von Neumann

Theorem the characterization then implies that a mechanism is IC if and only if it can be

decomposed into mechanisms where, up to relabeling of the types, the principal chooses L if

and only if both agents make the same report. This illustrates how incentive-compatibility

is fundamentally based on the inability (and unwillingness) of the agents to coordinate.

Example 5. Assume Θℓ = Θr = {1, . . . , m}. A mechanism x is said to be a match-your

opponent mechanism if there exists a matching8 m : Θℓ → Θr such that

x(θℓ, θr) =







1, if θr = m(θℓ)

0, otherwise

Assume that types are independent with πi =
1
N
. Using the Birkhoff-von Neumann Theo-

rem and Corollary 1, a mechanism x is IC if and only if there exist match-your-opponent

mechanisms xj and nonnegative coefficients γj such that

x =

k∑

j=1

xjγj .

Thus, a profitable mechanism exists if and only if there exists a profitable match-your-

opponent mechanism. If the principal’s objective is supermodular it follows9 that a profitable

mechanism exists if and only if
m∑

t=1

v(t, t) > 0.

7Recall that an element of a convex set is an extreme point of the set if is is not the midpoint of a line-
segment connecting two distinct points in the set. For a characterization of the extreme points of Π(πℓ, πr)
see Brualdi (2006), Theorem 8.1.2.

8A matching is a bijective function.
9See Becker (1973); Vince (1990); Hardy et al. (1952).
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Indeed, as long as types are independent and agents are symmetric (i.e. πℓ(t) = πr(t), t =

1, . . . , m), it can be shown that a profitable mechanism exists if and only if
∑m

t=1 πℓ(t)v(t, t) >

0.10

6 Allocation with more than two agents and disposal

One application of our results is the problem of allocating a single nondisposable good

between two agents. In this section, we extend our setting and study the problem of allocating

a (potentially disposable) good among n agents i = 1, . . . , n.

Agents are again expected utility maximizers and enjoy utility 1 from receiving the good

and 0 otherwise.11 Every agent has a private type θi ∈ Θi. The set of type profiles Θ = ΠiΘi

is finite. Throughout this section we assume that types are independent; the joint type

distribution is denoted by π(θ1, . . . , θn) = π1(θ1) . . . πn(θn)
12.

The principal’s value from allocating the good to agent i can depend on the types θ =

(θ1, . . . , θn) of all agents and is denoted by vi(θ) ∈ R. A (direct) mechanism specifies for

each agent i and every profile θ the probability of allocating the good to this agent when the

report profile is θ.

We distinguish between the case where the principal can commit to dispose the good from

the case where she is forced to allocate to one of the agents.13 We normalize the principal’s

utility from disposing the good to 0. If the principal must allocate the good the feasibility

constraint reads:
∑n

i=1 xi(θ) = 1; under free disposal it reads:
∑n

i=1 xi(θ) ≤ 1. In either case,

the principal’s problem is to find a feasible, incentive compatible mechanism that maximizes

E[
∑n

i=1 vi(θ)xi(θ)]. As before, we will be interested in whether the principal can do better

than choosing her ex-ante preferred option.

We first characterize the set of incentive compatible mechanisms. Whether or not disposal

is possible, a mechanism is incentive compatible if and only if each agent’s interim probability

of obtaining the good does not depend on his report:

Lemma 3. Assume there are n agents with independent types and let x be a mechanism

(with or without disposal). Then x is incentive compatible if and only if

E[xi(θi, θ−i)] = E[xi(θ)] ∀i ∀θi.

10See Hoffman et al. (1963).
11All results apply unchanged if agents receive utility ūi(θi) > 0 from getting the good and 0 otherwise.
12As before, we assume without loss of generality that πi > 0, i = 1, . . . , n.
13An alternative interpretation of disposal is that the principal allocates the good to herself.
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Let v̄ = maxiE[vi(θ)] be the principal’s expected payoff from allocating to her ex-ante

preferred agent.

An incentive compatible mechanism is profitable if it yields the principal strictly more

than choosing her ex-ante preferred option (ignoring type reports). Formally, when there

is free disposal, an incentive compatible mechanism is profitable if
∑

i E[vi(θ)xi(θ)] >

max{0, v̄}. Without disposal it is profitable if
∑

i E[vi(θ)xi(θ)] > v̄.

The following proposition generalizes the scope of Proposition 4 to the n agent case under

independence.

Proposition 6. Assume there are n agents with independent types and that the principal

has to allocate to some agent. If the principal is unbiased then a profitable mechanism exists

if and only if there do not exist functions u1(θ1), . . . , un(θn) such that

vi(θ)− vj(θ) = ui(θi)− uj(θj) ∀i, j ∀θ. (4)

In the proof (in the appendix) we show that a violation of condition (4) remains a

necessary condition for the existence of a profitable mechanism when the principal is not

unbiased. The above proposition also allows us to state a necessary and sufficient condition

for the existence of a profitable mechanism when the principal is allowed to discard the good:

Proposition 7. Assume there are n agents with independent types and that the principal

does not have to allocate the good to the agents. If the principal is unbiased and v̄ = 0

then a profitable mechanism exists if and only there is an agent j such that vj(θj, θ−j) is not

constant in θ−j.

7 Related Literature

Our main setting can be interpreted as an allocation problem without disposal. It there-

fore relates to Myerson (1981) who characterizes the set of IC-mechanisms with transfers

under independence. Crémer and McLean (1985, 1988) show that with transfers, full rank

correlation makes any allocation rule implementable.

Börgers and Postl (2009) study a setting without transfers and two agents with opposed

interests. Their setting has a third option that acts as a compromise and types are iid.

They consider utilitarian welfare and study second-best rules using numerical tools. Since

utilitarian welfare is additive, our results underline the importance of the compromise option

for their results. Kim (2017) considers a related setting with at least three ex-ante symmetric

alternatives and several agents with iid private values whose interests are not necessarily

opposed.
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Feng and Wu (2019) ask in a setting without transfer with a perfect conflict of interests

not between the agents but between the agents and the principal if the later can do better

than choosing her ex-ante preferred option. Goldlücke and Tröger (2020) study “threshold

mechanisms” with binary message spaces to assign an unpleasant task without transfers in

a setting with symmetric agents with iid types.

The proof of Proposition 1 connects implementation of mechanisms with the properties

of correlated equilibrium Aumann (1974, 1987) in zero sum games Rosenthal (1974).

Our comparative statics result for the set of IC mechanisms with respect to the spanning

preorder relates to Blackwell’s (1953; 1951) comparison of experiments (see also Börgers et al.

(2013)) and Bergemann and Morris’s (2016) comparison of information structures in games.

A difference is that they compare signals which are informative about a payoff-relevant state

while in our setting the signals themselves are payoff-relevant.

Since the set of DIC mechanisms in our setting coincides with the set of constant mech-

anisms, the existence of non-constant IC mechanisms is related to BIC-DIC equivalence

Gershkov et al. (2013); Manelli and Vincent (2010). In our setting, IC under correlation can

be viewed as a mid-way point between IC under independence and DIC.

A Appendix

A.1 Proof of Lemma 2

Proof. Let π ∈ Π and let x be IC. By Proposition 1, agents must be ex-ante indifferent

between reports and their type realizations must be uninformative. Conversely, suppose

that x satisfies the assumptions of Lemma 2. Ex-ante indifference combined with the law of

iterated expectations implies that Eπ[x(θ
′
i, θ−i)] = Eπ[x(θ)] ∀i, θ

′
i. Hence for any i and θi, θ

′
i:

Eπ[x(θ
′
i, θ−i)|θi] = Eπ[x(θ

′
i, θ−i)]

= Eπ[x(θ)],

where the first equality follows from uninformativeness.

A.2 Proof of Proposition 3

Proof. The first assertion is an immediate consequence of Proposition 2 and Example 2. To

see why the second assertion holds note that if τ 0, τ 1, . . . , τk ∈ ∆Θ−i and y(θ−i) : Θ−i → R
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is any function such that

∑

θ−i

τ j(θ−i)y(θ−i) = 0 ∀j = 1, . . . , k.

then also
∑

θ−i
τ 0(θ−i)y(θ−i) = 0 if τ 0 is spanned by {τ 1, . . . , τk}.

Now assume without loss that |Θℓ| ≥ |Θr|. By the full rank-condition the vectors

(π(·|θℓ))θℓ contain a basis of RΘr . In particular, for any θr, they span the belief 1θr which

puts mass 1 on θr. But then ℓ’s IC constraints must be satisfied under that belief (consider

the function yθ′
ℓ
(θr) = x(θ′ℓ, θr)− x̄). But that means that

x(θ′ℓ, θr) = x̄ ∀θ′ℓ.

Since θr was arbitrary it follows that x must be constant.

Next we will show that π ∈ Π is maximal iff it has full rank and minimal iff it is an

independent type distribution. We need to show that (i) π has full rank iff it spans every π̃

that spans it and (ii) π is an independent type distribution iff for every π̃ spanned by π it is

also the case that π̃ spans π. Throughout, assume without loss of generality that |Θℓ| ≥ |Θr|.

First note that for π, π̃ ∈ Π, π spans π̃ if and only if the row space and the column space

of π̃ are contained in the row space and the column space, respectively, of π.

Assume that π ∈ Π has full rank and that π̃ ∈ Π spans π. Denote the column and row

spaces of π and π̃ by V,W and Ṽ , W̃ , respectively. Since π̃ spans π it holds that V ⊂ Ṽ

and W ⊂ W̃ . Since π has full rank, V and W both have dimension |Θr|. π̃ is an |Θℓ| × |Θr|

matrix and so its column and row spaces cannot have a dimension larger than |Θr|. Hence

we must have V = Ṽ and W = W̃ . But that implies that π also spans π̃. Thus π is maximal.

Conversely, assume that π is maximal. Let π̃ ∈ Π be some full rank distribution that spans

π. Since π is maximal, π must then also span π̃. Hence the row space (and also the column

space) of π must have dimension |Θr|. This means that π has full rank.

Now let π be an independent distribution. Let π̃ be spanned by π. Then, for all θi, π̃(·|θi)

is a linear combination of the vectors π(·|θ̃i) (θ̃i ∈ Θi). But since types are independent under

π, the latter vectors all coincide with πi(·). Hence π̃(·|θi) = πi(·) for all θi, i = ℓ, r. Thus

π̃ = π; in particular π̃ spans π. Hence π is a minimal element. Now let π̃ be a minimal

element. Let π̃ be the independent distribution with the same marginals as π. Then π spans

π̃ and since π is minimal, π̃ must also span π. But π̃ has rank one and so π must also have

rank one. But that means that π must be an independent type distribution (thus π = π̃).
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A.3 Proof of Proposition 4

Proof. First consider a general π ∈ Π. Define w(θ) = v(θ)π(θ). If Eπ[v(θ)] = 0 and agents

are truthful then the principal’s payoff from some mechanism x is

∑

θ

v(θ)π(θ)x(θ) = Eπ[v(θ)]Eπ[x(θ)] +
∑

θ

v(θ)π(θ)(x(θ)− Eπ[x(θ)])

=
∑

θ

w(θ)(x(θ)−Eπ[x(θ)]).

By Proposition 1, x is IC if and only if

∑

θ−i

π(θ−i|θi)(x(θ
′
i, θ−i)−Eπ[x(θ)]) = 0 ∀θi, θ

′
i ∀i. (3)

First assume that there exist coefficients λℓ(θℓ, θ̃ℓ), λr(θr, θ̃r) ∈ R such that

w(θ) =
∑

θ̃ℓ

λℓ(θℓ, θ̃ℓ)π(θr|θ̃ℓ) +
∑

θ̃r

λr(θr, θ̃r)π(θℓ|θ̃r) ∀θℓ, θr. (4)

Then by (3), any IC mechanism satisfies
∑

θ w(θ)(x(θ) − Eπ[x(θ)]) = 0 and so there is no

profitable mechanism.

Now assume instead that there exist no coefficients λℓ and λr such that w satisfies (4).

Let U be the set of all u ∈ R
Θℓ×Θr for which there exist coefficients λℓ(θℓ, θ̃ℓ), λr(θr, θ̃r) ∈ R

such that

u(θ) =
∑

θ̃ℓ

λℓ(θℓ, θ̃ℓ)π(θr|θ̃ℓ) +
∑

θ̃r

λr(θr, θ̃r)π(θℓ|θ̃r) ∀θℓ, θr.

Note that U is a linear subspace of RΘℓ×Θr (Indeed, 0 ∈ U and U is closed under addition

and multiplication by scalars). Let û be the orthogonal projection of w onto U and let ŵ be

the orthogonal projection of w onto the orthogonal complement of U so that w = ŵ+ û. By

assumption w 6∈ U , and so ŵ 6= 0.

As before, given any IC mechanism x it holds that
∑

θ û(θ)(x(θ)−Eπ[x(θ)]) = 0 and so

the principal’s payoff from any IC mechanism x is

∑

θ

w(θ)(x(θ)− Eπ[x(θ)]) =
∑

θ

ŵ(θ)(x(θ)−Eπ[x(θ)]).

We will now construct a profitable mechanism, i.e. an IC mechanism for which the latter

expression is positive. Define

x̂(θ) = ε(ŵ(θ)−min ŵ)
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where ε > 0 is sufficiently small such that x̂ ≤ 1. First note that x̂ is IC. Indeed, for any

θ′ℓ, θ
′′
ℓ ,

∑

θr

π(θr|θ
′′
ℓ )x̂(θ

′
ℓ, θr) = ε

∑

θr

π(θr|θ
′′
ℓ )ŵ(θ

′
ℓ, θr)− εmin ŵ

= ε
∑

θℓ

∑

θr




∑

θ̃ℓ

1θℓ=θ′
ℓ
,θ̃ℓ=θ′′

ℓ
π(θr|θ̃ℓ)





︸ ︷︷ ︸

∈U

ŵ(θℓ, θr)− εmin ŵ

= −εmin ŵ,

where the last equality follows because ŵ lies in the orthogonal complement of U . Hence x̂

is IC for agent ℓ. The proof that x̂ is IC for agent r is symmetric.

We now show that x̂ is actually a profitable mechanism. First note that the above

incentive-compatibility calculation implies that Eπ[x̂(θ)|θℓ] = −εmin ŵ and in particular

Eπ[x(θ)] = −εmin ŵ. Thus the principal’s payoff from x̂ is

∑

θ

ŵ(θ)(x(θ)− Eπ[x(θ)]) = ε
∑

θ

ŵ(θ)ŵ(θ)

> 0.

Hence x̂ is a profitable mechanism.

Finally, assume that types are independent. Note that

v(θℓ, θr)πℓ(θℓ)πr(θr) =
∑

θ̃ℓ

λℓ(θℓ, θ̃ℓ)π(θr) +
∑

θ̃r

λr(θr, θ̃r)π(θℓ) ∀θℓ, θr

if and only if

v(θℓ, θr) =
∑

θ̃ℓ

λ̃ℓ(θℓ, θ̃ℓ)

︸ ︷︷ ︸

vℓ(θℓ)

+
∑

θ̃r

λ̃r(θr, θ̃r)

︸ ︷︷ ︸

vr(θr)

,

where λ̃i(θi, θ̃i) =
λi(θi,θ̃i)
πi(θi)

and so the earlier condition reduces to additivity.
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A.4 Proof of Proposition 5

Proof. By Lemma 2, the principal’s problem can be written as

max
∑

θ

v̂(θ)πℓ(θℓ)πr(θr)x(θ)

s.t.
∑

θ−i

π−i(θ−i)x(θ
′
i, θ−i) =

∑

θ

πℓ(θℓ)πr(θr)x(θℓ, θr) ∀θ′i ∀i (Ii)

∑

θ−i

π(θ−i|θi)x(θ
′
i, θ−i) =

∑

θ−i

π−i(θ−i)x(θ
′
i, θ−i) ∀θi, θ

′
i ∀i (Ui)

0 ≤ x(θ) ≤ 1 ∀θ. (F )

Here, (Ii) are the ex-ante indifference constraints (or, equivalently, the IC constraints under

the independent type distribution πℓπr) and (Ui) are the uninformativeness constraints. Now

define

f(θℓ, θr) = πℓ(θℓ)πr(θr)x(θℓ, θr).

Using this substitution the principal’s objective becomes
∑

θ v(θ)f(θ), the ex-ante indiffer-

ence constraints become

∑

θ−i

f(θ′i, θr) = πi(θ
′
i)
∑

θ

f(θ) ∀θ′i ∀i (6)

and the uninformativeness constraints can be written as

∑

θ−i

(π(θi|θ−i)− πi(θi))f(θ
′
i, θ−i) = 0 ∀θi, θ

′
i ∀i (7)

while the feasibility constraints become

0 ≤ f(θℓ, θr) ≤ πℓ(θℓ)πr(θr) ∀θℓ, θr.

Equation (6) says that the marginals of f are proportional to πi. Since f is nonzero, it is thus

a nonnegative multiple of some joint probability distribution π̃ with marginals πi. Hence the
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principal’s problem can be written as

max
q∈[0,1]

max
π̃∈Π(πl,πr)

q
∑

θ

v̂(θ)π̃(θ)

s.t.
∑

θ−i

(π(θi|θ−i)− πi(θi))π̃(θ
′
i, θ−i) = 0 ∀θi, θ

′
i ∀i

qπ̃(θℓ, θr) ≤ πl(θℓ)πr(θr) ∀θℓ, θr

where Π(πl, πr) is the set of joint type distributions with marginals πi. A profitable mecha-

nism therefore exists if and only if the latter problem has a positive optimal value.

Since any π̃ ∈ Π(πℓ, πr) can be made to satisfy the constraint qπ̃(θℓ, θr) ≤ πl(θℓ)πr(θr)

after appropriate scaling, the problem’s optimal value is positive if and only if the value of

the relaxed problem in which that constraint is left out is positive. Finally, note that

∑

θ−i

(π(θi|θ−i)− πi(θi))π̃(θ
′
i, θ−i) =

∑

θ−i

(π(θi|θ−i)− πi(θi))π̃(θ
′
i|θ−i)π−i(θ−i)

=
∑

θ−i

(π(θi|θ−i)− πi(θi))(π̃(θ
′
i|θ−i)− πi(θ

′
i))π−i(θ−i)

because
∑

θ−i
(π(θi|θ−i)−πi(θi))πi(θ

′
i)π−i(θ−i) = 0. Therefore a profitable π̃ exists if and only

if the optimal value of the following problem is positive:

max
π̃∈Π(πl,πr)

∑

θ

v̂(θ)π̃(θ)

s.t.
∑

θ−i

(π(θi|θ−i)− πi(θi))(π̃(θ
′
i|θ−i)− πi(θ

′
i))π−i(θ−i) = 0 ∀θi, θ

′
i ∀i.

This concludes the proof of Proposition 5.

A.5 Proof of Corollary 1

Proof. The proof of Proposition 5 shows that under independence, a mechanism x is IC if

and only if there exists some q ∈ [0, 1] and π̃ ∈ Π(πl, πr) such that πlπrx = qπ̃. The set

Π(πl, πr) is a polytope (known as the transportation polytope), hence by the Weyl-Minkowski

Theorem it is the convex hull of its finitely many extreme points. This implies the claim.

A.6 Proof of Lemma

Let x = (x1, . . . , xn) be an incentive compatible mechanism. Let i be an agent and let

θi, θ
′
i ∈ Θi. In order for type θi to be truthful, it must hold that E[xi(θi, θ−i)] ≥ E[xi(θ

′
i, θ−i)].
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In order for type θ′i to be truthful, E[xi(θi, θ−i)] ≤ E[xi(θ
′
i, θ−i)] must hold. Hence in any

incentive compatible mechanism E[xi(θi, θ−i)] is constant in θi, for all i. Since any mechanism

satisfying the latter is also incentive compatible, the condition is equivalent to incentive

compatibility. Finally, if E[xi(θi, θ−i)] is constant in θi then it must equal E[xi(θ)].

A.7 Proof of Proposition 6

Proof. First assume that (4) holds. It follows that there exist functions ui(θi) such that

vi(θ) − vn(θ) = ui(θi) − un(θn) for all i and θ. Recall that in an IC mechanism x, x̄i :=

E[xi(θi, θ−i)] does not depend on θi. The principal’s payoff from an incentive compatible

mechanism x is therefore

∑

i

E[vi(θ)xi(θ)] =
∑

i<n

E[(vi(θ)− vn(θ))xi(θ)] + E[vn(θ)
∑

i

xi(θ)]

=
∑

i<n

E[(ui(θi)− un(θn))xi(θ)] + E[vn(θ)]

=
∑

i<n

E[ui(θi)E[xi(θ)|θi]]−E[un(θn)E[
∑

i<n

xi(θ)|θn]] + E[vn(θ)]

=
∑

i<n

E[ui(θi)]x̄i −E[un(θn)(1− x̄n)] + E[vn(θ)]

=
∑

i

E[ui(θi)]x̄i + E[vn(θ)− un(θn)]

=
∑

i

E[vi(θ) + un(θn)− vn(θ)]x̄i + E[vn(θ)− un(θn)]

=
∑

i

E[vi(θ)]x̄i.

Hence, if (4) holds then the principal’s expected payoff from an incentive compatible mecha-

nism x is the same as her expected payoff from the constant mechanism y given by yi(θ) ≡ x̄i.

In particular, the principal cannot do better than allocating to her ex-ante preferred agent

and so no profitable mechanism exists. Note that we have not used the unbiasedness as-

sumption and so the following is true even if the principal is not unbiased: A profitable

mechanism can only exist if (4) is violated.

Now let the principal be unbiased. Assume that (4) is violated. Then there do no exist

functions ui(θi) (i = 1, . . . , n) such that vi(θ) − vn(θ) = ui(θi) − un(θj) (i < n). (If such

functions did exist then it would follow that for any i, j: vi(θ) − vj(θ) = vi(θ) − vn(θ) −

(vj(θ)− vn(θ)) = ui(θi)−un(θn)− (uj(θj)−un(θn)) = ui(θi)−uj(θj) and so (4) would hold).

We will now construct a profitable mechanism.

Let Ω be the vector space of functions from {1, . . . , n−1}×Θ to R and let Ui be the set of
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functions from Θi to R. Moreover, let W ⊂ Ω be the set of functions from {1, . . . , n−1}×Θ

to R for which there exist functions ui(θi) with wi(θ) = π(θ)(ui(θi)−un(θn)) ∀i < n ∀θ. Now

consider the following minimization problem

min
u1∈U1,...,un∈Un

∑

i<n

∑

θ

[π(θ)(vi(θ)− vn(θ))− π(θ)(ui(θ)− un(θ))]
2

= min
w∈W

∑

i<n

∑

θ

[ṽi(θ)− wi(θ)]
2,

where ṽi(θ) = π(θ)(vi(θ) − vn(θ)). Note that W is a linear subspace of Ω and hence the

solution ŵ to the above minimization problem is the orthogonal projection of ṽ ∈ Ω onto

W (all spaces are finite-dimensional and so existence is not an issue). Let ε̂ = ṽ − ŵ be the

projection residual. Note that the optimal value of the minimization problem is zero if and

only if (4) holds. By assumption, (4) is violated and hence in particular ε̂ must be nonzero.

Moreover, since ε̂ is orthogonal to W , for any h ∈ W it must hold that

∑

i<n

∑

θ

hi(θ)ε̂(θ) = 0.

We will now use ε̂ to construct a profitable mechanism. Let ε̂ = mini<n,θ ε̂i(θ) and let

ẑi(θ) = ε̂i(θ)− ε̂ ∀i < n ∀θ.

By construction, ẑ ∈ Ω is nonnegative. Define

x̂i(θ) = αẑi(θ),

where α > 0 is chosen sufficiently small such that
∑

i<n x̂i(θ) ≤ 1 for all θ. Also, define

x̂n(θ) = 1−
∑

i<n x̂i(θ). Then x̂ is a feasible mechanism.

In the remainder of the proof we show that x̂ is a profitable mechanism. We first verify

that x̂ is IC. Let j < n be an agent. Then for any report θ′j it holds that

∑

θ−j

π−j(θ−j)x̂j(θ
′
j , θ−j) =

∑

i<n

∑

θ

π(θ)
1

πj(θj)
1(θj = θ′j)1(i = j)ε̂i(θ)− αε̂

= −αε̂,

because the function π(θ) 1
πj(θj)

1(θj = θ′j)1(i = j) lies in W and the function ε̂i(θ) is orthog-

onal to W . Since −αε̂ does not depend on θ′j , x̂ is IC for agent j. It remains to check IC for
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agent n. Let θ′n be a report. Then

∑

θ−n

π−n(θ−n)x̂n(θ
′
n, θ−n) =

∑

θ−n

π−n(θ−n)(1−
∑

i<n

x̂i(θ
′
n, θ−n))

= 1 + (n− 1)αε̂− α
∑

i<n

∑

θ

π(θ)
1

πn(θn)
1(θn = θ′n)ε̂i(θ)

= 1 + (n− 1)αε̂,

because the function π(θ) 1
πn(θn)

1(θn = θ′n) lies in W and the function ε̂i(θ) is orthogonal to

W . Hence x̂ is an IC mechanism. It only remains to show that the principal’s expected

payoff from x̂ is greater than v̂.

The principal’s expected payoff from x̂ is

∑

i

∑

θ

π(θ)vi(θ)xi(θ) =
∑

i<n

∑

θ

π(θ)(vi(θ)− vn(θ))x̂i(θ) +
∑

θ

π(θ)vn(θ)
∑

i

x̂i(θ)

=
∑

i<n

∑

θ

ṽi(θ)x̂i(θ) + v̄

= α
∑

i<n

∑

θ

(ŵi(θ) + ε̂i(θ))ε̂i(θ)− α
∑

i

∑

θ

ṽi(θ)ε̂+ v̄.

By assumption,
∑

θ π(θ)vi(θ) is the same for all i and hence for any i < n:
∑

θ ṽi(θ) = 0.

This means that the second term in the last line above is zero. Because in addition ŵ ∈ W

and ε̂ is orthogonal to W , the principal’s expected payoff now simplifies to

α
∑

i<n

∑

θ

ε̂i(θ)
2 + v̄.

By assumption ṽ does not lie in W and so the projection residual ε̂ is nonzero. It follows

that the first term above is positive and therefore that the principal’s expected payoff from

x̂ is greater than v̄. That is to say, x̂ is a profitable mechanism.

A.8 Proof of Proposition 7

Proof. The result follows from Proposition 6 by interpreting the disposal option as an ad-

ditional agent. Formally, let there be an agent 0 with a singleton type space Θ0 = {θ0}

and v0 ≡ 0. A mechanism without disposal in this setting corresponds to a mechanism with

disposal in the original setting. By Proposition 6, a profitable mechanism without disposal

exists in the setting with the additional agent if and only if there do not exist functions ui(θi)

(i = 0, . . . , n) such that vi(θ) − v0(θ) = ui(θi) − u0(θ0) ∀i > 0 ∀θ. Since Θ0 is a singleton
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and v0 ≡ 0 the condition simplifies the following: A profitable mechanism exists if and only

there do not exist functions u1(θ1), . . . , un(θn) and a constant c such that vi(θ) = ui(θi)− c

∀i > 0 ∀θ. But the latter simply means that there does not exist an agent i > 0 such that

vi(θi, θ−i) is not constant in θ−i.
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