
Costly Evidence and the Value of Commitment*

Justus Preusser�

This version: November 18, 2022

Abstract

A principal has to accept or reject a proposal. The optimal decision depends

on the verifiable type of an agent. The agent always wants the proposal to

be accepted, and can influence the distribution of the type at a cost. If the

principal does not have commitment power, the principal is typically no better

off than when acting uninformedly. The principal can be strictly better off by

committing to a mechanism. Optimally, the principal commits to sometimes

rejecting the proposal when it is optimal to accept, and commit to sometimes

accepting the proposal when it is optimal to reject.
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1 Introduction

Consider a principal who decides whether to accept or reject a proposal. The optimal

decision depends on the private type of an agent who wants the proposal to be

accepted, regardless of the type. Monetary transfers cannot be used to elicit this

type, but the type is verifiable; that is, the agent can provide evidence to conclusively

prove the type realization.

The existing literature on optimal mechanisms for these kind of problems focuses

on situations where the distribution of the agent’s type is exogenously given. An

important finding is that commitment has no value to the principal. That is, in a

game where the principal responds optimally to the disclosed evidence—the evidence-

disclosure game—the principal is just as well off as when the principal can commit

to a mechanism (Ben-Porath et al., 2019; Glazer and Rubinstein, 2004, 2006; Hart

et al., 2017; Sher, 2011).

In the present paper, the type distribution is endogenous: the agent covertly

acquires a distribution only after the principal announces a mechanism. The main

result characterizes an optimal mechanisms and shows that commitment is valuable

for the principal.

In the model, the agent’s type is commonly-known to lie in [0, 1] and have some

fixed mean. We consider an agent who can flexibly acquire any type distribution

on [0, 1] with the given mean. The agent incurs some acquisitions costs that are

linear in the distribution and decreasing with respect to mean-preserving contractions.

Whatever the type realization, the agent chooses whether to provide conclusive proof

about the realization or to provide completely uninformative evidence; this is a special

case of Dye (1985) evidence.1 The principal wants to accept the proposal if and only

if the type is above some threshold; the agent always prefers the proposal to be

accepted.

If the principal has commitment power, the timing is as follows: First, the princi-

pal announces a mechanism; then, the agent covertly picks a type distribution; lastly,

the type realizes, and the agent decides what evidence and cheap-talk reports to

send to the mechanism. In the evidence-disclosure game, the only difference is that

1In this interpretation of the model, the agent chooses the distribution of a payoff-relevant state
(the type). Another interpretation is that the agent acquires information about a binary state. The
agent’s type is then interpreted as the agent’s posterior belief about the state.
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principal best responds to the disclosed evidence.

The main result of the paper characterizes an optimal mechanism. It is parametrized

by two type cutoffs θ0 and θ1, and by a probability α. If the agent discloses a type be-

low θ0, the principal accepts with probability α; for types in (θ0, θ1), with probability

0; for types above θ1, with probability 1. In particular, the cutoff θ1 is strictly above

the threshold where the principal would prefer accepting to rejecting; the cutoff θ0 is

strictly below this threshold.

The form of this optimal mechanism suggests that two forms of commitment are

valuable: First, the principal commits to rejecting some proposals that are efficiently

approved. Intuitively, if the principal did not commit to rejecting these proposals, the

agent would pick a distribution whose realizations are high enough to persuade the

principal to accept, but not sufficeintly high to strictly benefit the principal. Second,

if α > 0, then the principal commits to accepting some proposals that are efficiently

rejected. Accepting these proposals may be optimal in order to compensate the agent

for the costs of acquiring a distribution. Indeed, an example shows that all optimal

mechanisms may require the principal to accept some undesirable proposals.

This characterization of an optimal mechanism exploits the assumptions that

acquisition costs are linear and that the agent chooses among all distributions on

[0, 1] with a fixed mean. These assumptions are restrictive. The upside is that the

principal’s problem is tractable and that there is a clear sense of how exactly the

principal benefits from commitment.2

We next study equilibria of the evidence-disclosure game. Under permissive as-

sumptions on the environment, all equilibria in a natural class of equilibria give the

principal the utility that would obtain if the principal did not consult the agent at

all.3 One such assumption is that the agent’s acquisition costs are strictly decreas-

ing with respect to mean-preserving contractions (but the magnitude of these costs

do not matter). Although this exact result does not seem to have appeared in the

literature, it is intuitive from known results on information design.4 The result is

2By contrast, it is not so important that the principal takes a binary decision. In the supple-
mentary appendix, the characterization is extended to a problem with multiple alternatives.

3More precisely, we consider perfect Bayesian equilibria with the following additional property: If
the agent provides hard evidence about some type realization, then the principal’s belief is degenerate
on this type even if this happens off the equilibrium path.

4For example, the receiver in the courtroom-example from Kamenica and Gentzkow (2011) is
as well off as when acting uninformedly. More recently, Titova (2022, Theorem 2) shows that, in
a nearby evidence-disclosure game, the receiver is as well off as when acting uninformedly when a
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also intuitive from the characterization of optimal mechanisms: as suggested above,

the principal commits to rejecting some propsals that are efficiently accepted, and

commits to accepting some proposals that are efficiently rejected. We remark that

the result can be shown under assumptions on the agent’s acquisition costs and the

set of available distributions that are far less stringent than those used to characterize

optimal mechanisms (see Remark 1 in Section 5.2).

Let us briefly interpret these results in the context of two applications. First,

consider a funding agency that has to approve a project proposed by a regional

government. The agency prefers to approve if and only if the value of the project

exceeds the cost. Suppose that costs are known, but that the value depends on

the outcome of a risky investment by the regional government. Now, the funding

agency may be committed through regulations that specify certain quality standards.

However, these regulations may not be set up to suit a specific one-shot interaction,

and hence their design should account for the implied investment incentives. The

analysis suggests that if the regional government can flexibly tailor its investments to a

given set of regulations, then these regulations are valuable. In particular, regulations

optimally set the bar for the project’s value higher than the cost. Moreover, to ensure

that the regional government invests in the first place, it may be optimal to approve

some projects that turn out to be inefficient.

Second, consider a prosecutor who wants to persuade a judge that a defendant is

guilty. To convince the judge to accept, the prosecutor acquires information about the

defendant’s guilt. The judge wants to convict the defendant if and only the probability

of guilt exceeds some threshold of doubt. Now, the judge may be commited to certain

actions via their rulings in precdental cases. For example, the judge may have built

a reputation for being tough on prosecutors who are eager to convict. The analysis

suggests that this reputation is valuable—the judge optimally acquits the defendant

if the probability of guilt is larger than but too close to the judge’s threshold of doubt.

Optimal mechanisms may also require the judge to convict defendants that are more

likely to be innocent than guilty. This level of commitment power is unrealistic in

practice, and hence the results advocate the use of additional instruments.

sender-preferred equilibrium is played.
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2 Related literature

The paper aims to contribute to the literature on mechanisms with hard evidence.

The aforementioned papers of Ben-Porath et al. (2019), Glazer and Rubinstein (2004,

2006), Hart et al. (2017), and Sher (2011) provide sufficient conditions for commit-

ment to be without value when the type distribution is exogenous. Silva (2020) shows

that commitment is valuable if (the type distribution is exogenous but) the agent’s

evidence is imperfect. Most relevant for us are the recent papers of Ben-Porath et al.

(2021) and Migrow and Severinov (2022).

Among other things, Ben-Porath et al. (2021) find sufficient conditions for com-

mitment to be without value in a model with endogenous evidence. In their model,

the distribution of the payoff-relevant type is fixed; the agent’s actions affect what

evidence the agent can present about the type realization. By contrast, in the present

model, the agent affects the distribution of the payoff-relevant type; whatever type

realizes, it is commonly-known that the agent has evidence about this realization.

Migrow and Severinov (2022) consider a model where a principal decides whether

to implement a project. The agent chooses between two (mostly costless) investments:

one increases the quality of the project, the other generates a signal about the quality.

This contrasts our model in which the agent must be incentivized to undertake a costly

investment but is sure to have evidence about its quality. Like us, they find that

equilibria are inefficient and commitment has value for the principal. A qualitative

difference in the results is that in Migrow and Severinov (2022) the principal optimally

accepts when the agent provides weak evidence in the project’s favour; this is not so

in optimal mechanisms in our model. Moreover, in our model the equilibria of the

evidence-disclosure are not just inefficient—the principal is no better off than when

taking an uninformed action.

This paper is also related to the literature on mechanism design without transfers

but costly verification. See Bayrak et al. (2017), Ben-Porath et al. (2014), Epitropou

and Vohra (2019), Erlanson and Kleiner (2019, 2020), Halac and Yared (2020), Kat-

twinkel and Knoepfle (2019), and Li (2020). All of these consider settings with

exogenous types. We show that our results extend in a natural way to a model with

costly verification. Ben-Porath et al. (2019) previously pointed out such a connection

for models with exogenous types.

Shishkin (2021) and Whitmeyer and Zhang (2022) consider nearby evidence-
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disclosure games where the agent’s information is verifiable and flexibly chosen by the

agent.5 Among other things, they compare outcomes for overt and covert information

acquisition strategies. Neither paper considers principal-optimal mechanisms, which

are our focus. There are other differences between the respective models and our own

which lead to different results. For example, Whitmeyer and Zhang (2022) find that

if the agent can commit to what information to acquire, then the agent acquires no

information—this is not so in our model.

When the agent but not the principal can commit, the problem is one of Bayesian

perusasion. Tsakas et al. (2021) show that the receiver (the principal) may choose

to set up a resistance strategy. Such a strategy entails a cost for the receiver cost

whenever the receiver takes the preferred action of the sender (the agent). Resistance

strategies cannot capture the full scope of what one can do with commitment. For

example, the principal may optimally commit to taking the agent’s preferred action

at types where doing so is already suboptimal.

3 Model

We first introduce all relevant objects of the model, and then collect additional im-

portant assumptions at the end.

A principal decides whether to accept or reject a proposal. The principal’s payoffs

depend on the type θ of an agent who wants the proposal to be accepted. It is

commonly known that the agent has hard evidence about the type, that the type lies

in [0, 1], and that the mean of the type distribution is a value µ ∈ (0, 1). However,

the type distribution itself is endogenously chosen by the agent.

Let up(θ) and ua(θ), respectively, denote the principal’s and agent’s payoffs, re-

spectively, from accepting the proposal when the agent’s type is θ. The payoffs of

rejecting in the same situation are 0 for both the principal and the agent. The pay-

off ua(θ) is strictly positive; that is, the agent strictly prefers that the proposal be

accepted. The functions up and ua are continuous.

A type distribution means a cummulative distribution function (cdf) on [0, 1]

whose mean is µ. Let F denote the set of type distributions. The agent can acquire

an arbitrary type distribution, possibly at cost. We represent these costs by a function

K : F → R+ that is continuous with respect to the L1-norm on F .

5See also Escudé (2020), Titova (2022), and Zhang (2022) for more distantly related work.
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Whatever the type distribution, and whatever the realization θ of the type, the

agent can provide hard evidence from the set {{θ}, [0, 1]}. Evidence {θ} is interpreted
as a conclusive proof that the type is θ; the agent is unable to provide this evidence at

other type realizations. Evidence [0, 1] is interpreted as the agent proving the trivial

event that the type is in [0, 1]. Let E = {[0, 1]} ∪ (
⋃

θ∈[0,1]{{θ}} denote all possible

pieces of evidence.

To elicit the agent’s type, the principal commits to a mechanism. A mechanism

consists of a set M of cheap-talk messages and a function x : M × E → [0, 1]. Here,

we interpret x(m, e) as the probability that the principal accept the proposal when

the agent sends message m and provides evidence e.

The timing is as follows:

(1) The principal commits to a mechanism (M,x).

(2) The agent, knowing the mechanism, picks a type distribution F .

(3) Nature draws the agent’s type θ according to F .

(4) The agent, knowing the type θ, picks a messagem and evidence e in {{θ}, [0, 1]}.
(5) The mechanism accepts the proposal with probability x(m, e).

The agent acts in steps (2) and (4) to maximize expected utility, breaking ties in

favor of the principal.

We can simplify this model. Recall that all types of the agent strictly prefer that

the proposal be accepted. Therefore, if the principal commits to rejecting the proposal

whenever the agent does not fully disclose the realized type, the agent has a best-

response of always disclosing the type. It follows that the principal can implement

all functions x : [0, 1] → [0, 1]; here x(θ) is the probability that the principal accepts

when the agent discloses θ. For technical reasons, we only require that x be upper-

semicontinuous (usc). That is, henceforth a mechanism simply means a usc function

x : [0, 1] → [0, 1].

The agent’s and principal’s utilities, respectively, from a mechanism x and a type

distribution F are given by

Ua(x, F ) = EF [x(θ)ua(θ)]−K(F ) and Up(x, F ) = EF [x(θ)up(θ)] ,

respectively.6 Let F∗(x) = argmaxF̂∈F Ua(x, F̂ ); we refer F∗(x) as the set of agent-

6Throughout the paper, when F is a cdf and h : [0, 1] → R is an F -integrable function, we denote
EF [h(θ)] =

∫
hdF .
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optimal distributions on x.7

Since the agent breaks ties favorably, the principal evaluates a mechanism x via the

best-possible utility Ūp(x) that can arise via an agent-optimal distribution. Formally,

let

Ūp(x) = sup
F∈F∗(x)

Up(x, F ).

We now introduce additional assumptions that are maintained throughout the

paper. The first concerns the principal’s payoffs.

Assumption 1. The principal’s payoff up is convex, crosses 0 exactly once, and does

so from below at a point weakly above µ.

We let u−1
p (0) denote the unique point where up equals 0.

The second additional assumption concerns the agent’s payoffs.

Assumption 2. The agent’s payoff ua is concave. There is a continuous convex

function k : [0, 1] → R+ such that for all F ∈ F we have K(F ) = EF [k(θ)].

In words, the principal prefers accepting if and only if the type is above a threshold

value u−1
p (0), where u−1

p (0) is itself higher than the commonly-known mean µ of the

type. The other assumptions on up, ua and K hint at a conflict of interest between

the principal and the agent with respect to the choice of a type distribution: Given

two distributions F and F̂ , where F̂ is an mean-preserving contraction (MPC) of F ,

the agent prefers F̂ , and the principal prefers F .8

Lastly, we maintain the following non-triviality assumption.

Assumption 3. There exists a mechanism x such that Ūp(x) > 0.

Note that 0 is what the principal can guarantee by always rejecting the proposal.

Assumption 3 is a joint assumption on the utilities of the agent and principal, and

the prior mean µ. One sufficient condition for Assumption 3 is that K be sufficiently

7Since x is usc, since ua is strictly positive and continuous, and since K is L1-continuous on F ,
the agent’s utility is L1-usc on F . The set F is L1-compact, and so the existence of an agent-optimal
distribution follows from the Extreme Value theorem.

8Recall that if F is a cdf on [0, 1], a cdf F̂ is a mean-preserving contraction (MPC) of F if all

t ∈ [0, 1] satisfy
∫ t

0
(F (s)− F̂ (s)) ds ≥ 0, with equality for t = 1. In the same situation, the cdf F is

a mean-preserving spread (MPS) of F̂ .
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close to 0. Another sufficient condition is µ = u−1
p (0), meaning that the principal is

indifferent between accepting and rejecting at the mean type µ. See Proposition A.7

in Appendix A.1.1 for a proof of these claims.

4 Optimal mechanisms

4.1 Binary distributions suffice

Fixing a mechanism x, the agent solves an information design problem. The optimal

choice of a mechanism takes into account how the agent’s solution set F ∗(x) changes

with the mechanism x. Since the principal can implement all usc functions x : [0, 1] →
[0, 1], there is an enormous set of changes to x that we could consider as improvements.

We begin with a technical result that greatly simplifies the analysis: it is without

loss to assume the agent acquires a binary distribution. A distribution is binary if

its support contains at most two elements.

Lemma 4.1. Let Assumptions 1 and 2 hold. For all mechanisms x, there exists a

binary distribution F ∈ F∗(x) such that Up(x, F ) = Ūp(x); that is, there is an agent-

optimal distribution which is binary and maximizes the principal’s utility across all

agent-optimal distributions.

See Appendix A.1.2 for a proof.

We clarify in the next subsection how exactly Lemma 4.1 is useful. The idea of the

proof is as follows: The extreme points of F are binary distributions (Winkler, 1988).

The agent’s utility is linear and usc in the distribution. Hence Bauer’s Maximum

Principle (Border and Aliprantis, 2006, Theorem 7.69) implies that there is an agent-

optimal distribution F ∈ F∗(x) which is binary.9 It requires a little more work to

show that there is a binary agent-optimal distribution F solving Up(x, F ) = Ūp(x).

This claim follows from Choquet’s theorem (Phelps, 2001, p. 14) if we can show

that the principal’s utility is continuous in the distribution when restricted to agent-

optimal distributions. The principal’s utility is not generally continuous (or even

upper-semicontinuous) on the entire set of distributions; the reason is that θ 7→
x(θ)up(θ) admits a downward jump if x is discontinuous at a point where up is strictly

9An alternate proof of this part of the claim views the agent’s optimal choice of a type distribu-
tion on a given mechanism as a Bayesian persuasion problem, and then invokes Proposition 4 from
the online appendix of Kamenica and Gentzkow (2011).
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negative. It turns out, however, that these jumps cannot occur along a sequence of

agent-optimal distributions since such a jump would imply an upward jump in the

agent’s utility, contradicting agent-optimality of the members of the sequence.

4.2 Two-sided cutoff mechanisms

The following is a natural first guess for a good mechanism: fixing some threshold t

above u−1
p (0), the principal accepts if and only if the agent discloses a type weakly

above t. Let us call this a one-sided cutoff mechanism. A potential problem with this

mechanism is that the agent is only rewarded for realizations above t. If acquisitions

costs are too high (relative to t), the agent may wish to economize on acquisition costs

by acquiring the degenerate distribution on µ. Indeed, we later exhibit an example

of an environment (that meets the non-triviality Assumption 3 but) where, for all

values of t above u−1
p (0), no agent-optimal distribution on the described mechanism

places mass above t. In this environment, all one-sided cutoff mechanisms leave the

principal with a utility of 0.

How can the principal then obtain a strictly positive utility when acquisition costs

are non-negligible? The idea is simply to offer the agent additional compensation by

also rewarding sufficiently low realizations. This motivates the next definition.

Definition 1. A mechanism x is a two-sided cutoff mechanism if there exist

probabilities α, β and γ, and points θ0 and θ1 in [0, 1] such that β ≤ α, β ≤ γ, and

θ0 ≤ θ1, and such that

∀θ∈[0,1], x(θ) =


α, if θ ≤ θ0

β, if θ0 < θ < θ1

γ, if θ1 ≤ θ.

In this case, we refer to (θ0, θ1, α, β, γ) as the parameters of x.

Interpreted as an indirect mechanism, the agent discloses whether the realized

type is “low”, “intermediate”, or “high”. Intermediate types enjoy the lowest winning

probabilities. In all two-sided cutoff mechanisms considered below, the intermediate

interval contains both the mean µ and the point u−1
p (0) where the principal’s payoff

from accepting crosses 0.
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4.3 Two-sided cutoff mechanisms are optimal

We next show that two-sided cutoff mechanisms are optimal. Let x be a mechanism.

Let F ∗ be a binary distribution, and let its support be {θ∗0, θ∗1}. Consider the two-

sided cutoff mechanism x∗ defined as follows (see Figure 1):

∀θ∈[0,1], x∗(θ) =


x(θ∗0), if θ ≤ θ∗0

0, if θ∗0 < θ < θ∗1

x(θ∗1), if θ∗1 ≤ θ.

(4.1)

Figure 1: The two-sided cutoff mechanism x∗ (solid line) derived from x (dashed
line).

Lemma 4.2. Let Assumptions 1 and 2 hold. Let x be a mechanism such that Ūp(x) >

0. Let F ∗ ∈ F∗(x) be a binary distribution satisfying Up(x, F
∗) = Ūp(x). Let x∗ be

the two-sided cutoff mechanism defined in (4.1). Then Ūp(x
∗) ≥ Ūp(x).

See Appendix A.1.3 for a proof.

Lemma 4.1 asserts that there always exists a binary distribution as in the hypoth-

esis of Lemma 4.2. Hence, whenever Ūp(x) > 0, we can improve on x by passing to

10



a two-sided cutoff mechanism.

To better understand the lemma, let us decompose the passage from x to x∗ into

two steps. In a first step, we decrease x(θ) to 0 at all types θ except for the two types

θ∗0 and θ∗1 in the support of F ∗. This change weakly decreases the agent’s utility from

all distributions except F ∗. Hence F ∗ remains agent-optimal on the new mechanims,

implying that the new mechanism also gives the prinicipal a utility of Ūp(x).

In a second step, we obtain the mechanism x∗ by raising the acceptance proba-

bilities on the subintervals [0, θ∗0) and (θ∗1, 1], respectively, from 0 to x(θ∗0) and x(θ∗1),

respectively. The content of the lemma is that raising these probabilities weakly

increases the principal’s utility. Intuitively, raising the probabilities encourages the

agent to acquire a distribution that assigns non-zero probability to each of the outer

intervals, and no probability to the middle interval (θ∗0, θ
∗
1). Such a distribution is

mean-preserving spread of F ∗. Since the principal’s payoffs up are convex, we in-

tuit that raising the probabilities encourages the agent to acquire a distribution that

the principal weakly prefers to F ∗. (It is in this step that we use the hypothesis

Ūp(x) > 0.) Since F ∗ attains Ūp(x) on x, we conclude that x∗ improves on x.

Lemma 4.2 simplifies the principal’s problem from maximizing over all usc func-

tions x → [0, 1] → [0, 1] to maximizing over the parameters (θ0, θ1, α, β, γ) of two-

sided cutoff mechanisms. We next use this fact to prove the existence of an optimal

mechanism. Further, we sharpen the characterization of optimal parameters.

4.4 Optimal parameters

The main result asserts that it is optimal to set the acceptance probability γ∗ on the

right-most subinterval to 1. Moreover, the principal commits to rejecting at some

types where it would be optimal to accept. Lastly, an optimal mechanism exists.

Theorem 4.3. Let Assumptions 1 to 3 hold. There exists a probability α∗, and θ∗0

and θ∗1 in [0, 1] such that θ∗0 < µ ≤ u−1
p (0) < θ∗1, and such that the two-sided cutoff

mechanism with parameters (θ∗0, θ
∗
1, α

∗, 0, 1) maximizes Ūp over the set of mechanisms.

Moreover, the binary distribution F ∗ with support {θ∗0, θ∗1} and mean µ is agent-

optimal on x∗ and satisfies Ūp(x
∗) = Up(x

∗, F ∗).

See Appendix A.1.4 for a proof.

Recall that u−1
p (0) is the type where the principal’s payoffs from accepting crosses

0 from below. The inequality u−1
p (0) < θ∗1 thus implies that the principal commits
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to rejecting at some types where accepting is strictly preferred. Moreover, if α∗ > 0,

the inequality θ∗0 < µ implies that the principal commits to accepting at some types

where rejecting is strictly better.

The intuition for why it is optimal to set u−1
p (0) < θ∗1 is straightforward. The

agent will pick a distribution whose largest realization is θ∗1 (as per the theorem).

Hence, if θ∗1 ≤ u−1
p (0), the principal would always end up accepting at a point where

the principal is, at best, indifferent between accepting and rejecting.

It is also intuitive why the principal gains from setting γ∗, the acceptance prob-

ability on the right-most subinterval, to 1. Since θ∗1 is above u−1
p (0), increasing the

acceptance probability on the right-most subinterval contributes positively to the

principal’s utility. Setting γ∗ to 1 turns out to have another benefit: It incentivizes

the agent to pick a more variable distribution (in the MPS-ordering), and we already

intuited in the proof sketch for Lemma 4.2 that this benefits the principal.

Lastly, consider the value of α∗, the acceptance probability on the left-most subin-

terval. Accepting the proposal for realizations in this subinterval contributes nega-

tively to the principal’s utility. Nevertheless, the principal may find it optimal to pick

a non-zero value of α∗ in order to reimburse the agent for costs of acquiring F ∗. We

later present an example where no optimal mechanism can avoid accepting the pro-

posal at types where it is strictly better to reject. See Proposition 5.3 in Section 5.3.

(The example serves to illustrate some other points, and hence it is convenient to

delay the result.)

5 The evidence-disclosure game

In this section we consider a nearby game where the principal does not have commit-

ment power. We find that, under weak assumptions, the principal’s utility is 0 in all

equilibria of a natural class of equilibria.

5.1 Setup

The timing of the game is as follows:

(1) The agent covertly picks F in F .

(2) The agent draws θ from F , and discloses evidence e in {{θ}, [0, 1]}.
(3) The principal observes e, and accepts or rejects the proposal.
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The agent’s strategy specifies a type distribution F , and a Borel-measurable func-

tion σA : [0, 1] → [0, 1]; here σA(θ) is the probability that the agent provides evidence

e = {θ} when the realized type is θ; with complementary probability 1 − σ(θ) the

agent provides the trivial piece of evidence e = [0, 1].10

A strategy σP of the principal specifies a probability σP ([0, 1]) of accepting when

the agent discloses the trivial piece of evidence, and a Borel-measurable function

σP : [0, 1] → [0, 1]; here σP (θ) is the acceptance probability when the agent provides

evidence that the type is θ.

We consider (perfect Bayesian) equilibria with an additional property.11 An equi-

librium is truth-leaning if for all θ ∈ [0, 1], when the agent provides hard evidence

that the type is θ, then the principal’s beliefs are degenerate on θ. This property

has bite for types of the agent that do not provide evidence in equilibrium, or that

are not in the support of the equilibrium type distribution. We later discuss its role

in the next proposition as well as its relation to the truth-leaning equilibria of Hart

et al. (2017).

5.2 The principal’s equilibrium utility

The next result characterizes the possible values of the principal’s equilibrium utility.

Note that 0 is a lower bound on the principal’s equilibrium utility since the principal

can always reject.

Proposition 5.1. Let Assumptions 1 and 2 hold. There exists a truth-leaning equi-

librium where the principal’s equilibrium utility is 0. In all truth-leaning equilibria

exactly one of the following is true:

(1) The principal’s equilibrium utility is 0.

(2) The agent picks a distribution F satisfying EF [up(θ)] > 0. If the agent does not

disclose, the principal accepts with probability 1. The proposal is accepted with

F -probability 1.

10We could allow the agent to additionally send costless messages from some message set but
this would not alter out conclusions. To elaborate: Suppose there are two messages which all types
of the agent can send. If both are played in equilibrium, they must lead to the same acceptance
probability since all types of the agent strictly prefer that the proposal be accepted. Hence both
messages lead to the same payoff of the principal, too. (If the principal’s decision was between three
or more alternatives, this argument would not go through.)

11See Appendix A.2.1 for a formal definition.
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See Appendix A.2.2 for a proof.

The proof is easy to explain. Consider an equilibrium and let F denote the

agent’s type distribution. Suppose the principal’s utility is strictly positive; this

implies max suppF > u−1
p (0).

In an intermediate step, assume towards a contradiction that the set of types

where the proposal is not accepted with probability 1 has non-zero F -probability.

These must be types weakly below u−1
p (0) since, given the truth-leaning beliefs of

the principal and the principal’s lack of commitment, the principal accepts whenever

the agent discloses a type strictly greater than u−1
p (0). Given max suppF > u−1

p (0),

we can consider a perturbation of F where, informally speaking, the maximum of

the support is slightly decreased, and where probability mass is shifted to points

above u−1
p (0). The resulting distribution is an MPC of F that assigns strictly higher

probability to points above u−1
p (0). Thus it yields a strictly higher acceptance prob-

ability. Since it is an MPC of F , it is also cheaper to acquire. Thus the perturbation

constitutes a profitable deviation for the agent; contradiction.

At this point we know that on the equilibrium path the principal accepts F -almost

surely. To complete the argument, we notice that types strictly below u−1
p (0) (which

must arise in equilibrium, as else F is degenerate, and then the prinicipal’s utility

could not be strictly positive), can only get the principal to accept by not disclosing

the type. Thus the principal must be accepting whenever the agent does not disclose.

In summary, all equilibria where the principal’s utility is strictly positive must fall

into case (2) of Proposition 5.1. Recalling that the principal’s utility is always weakly

positive, all other equilibria fall into case (1).

Remark 1. Assumption 2 is stronger than what we really need for this argument.

It suffices if the agent can choose all distributions in a non-empty subset of F that

is closed with respect to MPCs, K is decreasing with respect to MPCs (but not

necessarily linear), and ua is strictly positive and concave.12

Which of the equilibria in Proposition 5.1 actually arise? Consider an equilibrium

that falls into case (2). One possible deviation of the agent is to acquire the degenerate

distribution and disclose nothing. Since the degenerate distribution is always the

cheapest one to acquire, the given equilibrium can only be sustained if the agent’s type

12To ensure the existence of a best response, we would also assume that the set of avilable type
distributions is L1-compact, that K is L1-lower semicontinuous, and that ua is continuous (at the
boundary).
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distribution is as cheap as the degenerate distribution. The next result is immediate

from these observations.

Corollary 5.2. Let Assumptions 1 and 2 hold. The principal’s utility is 0 in all

truth-leaning equilibria if at least one of the following holds:

(1) The function ua is strictly concave.

(2) The function K is strictly decreasing with respect to MPCs.13

(3) All F ∈ F satisfy EF [up(θ)] ≤ 0.

Corollary 5.2 speaks to the principal’s value of commitment under weak conditions

on the environment. Consider condition (2). Suppose that for all F the costs are

given by K(F ) = λK̄(F ), where λ is a strictly positive parameter and K̄ is strictly

decreasing with respect to MPCs (and satisfies Assumption 2). As λ vanishes, distri-

butions become arbitrarily cheap to acquire. By Corollary 5.2, the principal’s utility

is equal to 0 in all truth-leaning equilibria of the evidence-disclosure game. Neverthe-

less, Proposition A.7 in Appendix A.1.1 implies that as λ → 0 the principal’s utility

approaches the utility that would obtain if the principal could freely choose the type

distribution.14 One can make a similar argument involving condition (1).

Under condition (3), there is a conflict of interest. When the type distribution is F

and the principal makes a decision without consulting the agent, the principal’s utility

is EF [up(θ)]. Hence condition (3) asserts that, no matter F , the principal would never

accept the proposal without consulting the agent. Note that if the principal’s utility

up is affine in the type, then condition (3) is implied by the assumption µ ≤ u−1
p (0)

(Assumption 1). In particular, if up is affine and u−1
p (0) = µ, then all truth-leaning

equilibria give the principal a utility of 0 (Corollary 5.2), whereas the principal can

obtain a strictly positive utility by committing to a mechanism (recall the paragraph

after Assumption 3).

13That is, if F is an MPC of F ′ and F ̸= F ′, then K(F ) < K(F ′).
14This recalls the recent result of Ravid et al. (2022). In a model of bilateral trade with costly

endogenous information, they show that equilibria approach the Pareto-worst equilibrium with free
learning as information costs vanish. In our model, the equilibria of Proposition 5.1 can be Pareto-
ranked if ua is affine and K = 0, and in this case the equilibria from case (2) Pareto-dominate the
equilibria from case (1). A slight perturbation of the costs K eliminates all equilibria from case (2).
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5.3 Truth-leaning beliefs

We now discuss the restriction to truth-leaning beliefs in Proposition 5.1. Hart et

al. (2017), who study the value of commitment in a model with an exogenous type

distribution, propose truth-leaning equilibria as ones where the agent enjoys some

inherent bonus from revealing the truth.15 They show that in terms of outcomes

truth-leaning equilibria are equivalent to perfect Bayesian equilibria in which (i.) the

agent discloses the type if doing so is weakly optimal, and (ii.) the principal’s beliefs

are degenerate on the type when the agent discloses the type. Here we have only

imposed an analogue of (ii.).

It is worth emphasizing that Proposition 5.1 does not extend to non-truth-leaning

equilibria. To see this, let K = 0. Consider the one-sided cutoff mechanism x with

cutoff 1; that is, the mechanism that accepts if and only if the agent discloses θ = 1.

The unique agent-optimal distribution on this mechanism is the binary distribution F̄

with support {0, 1} and mean µ. In particular, the principal’s utility from committing

to x is strictly positive. Now consider the following strategy profile and beliefs: The

agent acquires F̄ and always discloses the type. If the agent discloses a type of 1, the

principal’s belief is degenerate on 1 and the principal accepts; in all other cases, the

principal’s belief is degenerate on 0 and the principal rejects. Since types in (0, 1) are

not in the support of F̄ , these strategies and beliefs define an equilibrium. It clearly

induces the same outcome as the mechanism x. It also does not fall into case (1)

of Proposition 5.1 (as the principal’s utility is strictly positive) nor case (2) (as the

agent always discloses the type).

The construction in the previous paragraph relies on K = 0. For environments

where K is non-zero, it is conceivable that to incentivize the agent’s choosing a non-

degenerate distribution the principal may also have to accept at types that are on-path

and where accepting is not a best response. No choice of beliefs can rationalize this

behavior of the principal. We already intuited in Section 4.4 that the principal may

optmally commit to such behavior. Thus commitment may remain valuable if costs

are non-negligible. The next proposition verifies that such environments exist.

15In their definition, an equilibrium is truth-leaning if it is obtained as the limit of equilibria
of nearby games; in the latter games, the agent enjoys a bonus from revealing the truth and must
reveal the truth with a strictly positive. The limit lets the bonus and the lower bound on probability
of revealing the truth converge to 0.
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Proposition 5.3. There exist µ, ua, up and K satisfying Assumptions 1 to 3, and

such that in this environment all of the following are true:

(1) In the evidence-disclosure game, the principal’s utility is 0 in all equilibria

(truth-leaning or not).

(2) Let x be a mechanism. Let F ∈ F be agent-optimal on x. If Up(x, F ) > 0, then

the set {θ ∈ [0, u−1
p (0)) : x(θ) ∈ (0, 1)} has non-zero F -probability.

See Appendix A.2.3 for a proof.

In words, the principal must accept probabilistically at types that are in the

support of type distribution but where it is strictly better to reject.

An implication of (1) is that commitment is valuable (the principal’s utility is 0

in all equilibria, but the non-triviality Assumption 3 holds).

An implication of (2) is that deterministic mechanisms do not suffice for solving

the principal’s problem, the following sense. Suppose the principal attempted to im-

plement a given mechanism x by first randomly selecting a deterministic mechanism,

and then revealing this deterministic mechanism to the agent. The result implies

that if the agent picks the distribution after the deterministic mechanism is revealed,

then the agent picks a distribution for which the principal’s utility is at most 0. The

fact that deterministic mechanisms do not suffice contrasts the case where the dis-

tribution is exogenously given; for in that case, the principal’s utility from a convex

combination of mechanisms is equal to the convex combination of their individual

utilities (see Section 6.1).16

6 Conclusion

We studied a mechanism design problem where the agent endogenously acquires

a type distribution and possesses hard evidence about the type realization. The

comparison with a nearby game reveals that the principal benefits from commitment

power. In particular, the principal may optimally commit to picking the agent’s least

favourite alternative when their preferences are aligned, and to picking the agent’s

favourite alternative when their preferences are misaligned. To wrap up, we discuss

some variations on the model.

16The existing literature has found general conditions under which deterministic mechanism do
suffice in models with exogenous type distribution. See in particular Ben-Porath et al. (2019) and
Sher (2011, 2014).
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6.1 Exogenous type distributions

Suppose the agent’s type distribution is fixed to some distribution F ∈ F . As before,

it is without loss to view the principal as choosing a usc function x : [0, 1] → [0, 1],

giving the principal a utility of EF [x(θ)up(θ)]. Clearly, this utility is no greater

than EF [max(0, up(θ))]. This upper bound is attainable if the principal commits to

the one-sided cutoff mechanism with cutoff u−1
p (0).17 We claim that this one-sided

cutoff mechanism is not optimal when the agent’s distribution is endogenous. The

reason is that the agent will acquire a distribution that is supported on points weakly

below u−1
p (0). The principal therefore ends up rejecting with probability 1, or being

indifferent between accepting and rejecting. In particular, the principal enjoys a

utility of 0. This is precisely the reasoning that also established Proposition 5.1.

6.2 Costly verification

In Appendix B.1 we consider a model where the agent cannot provide costless evi-

dence about the type, but where the principal can audit the agent at a cost. If the

agent’s type is θ, auditing reveals the type and the principal incurs a cost c(θ), where

c : [0, 1] → R+ is some function. With simple modifications to the current proofs

and by strengthening Assumption 1, one can show that two-sided cutoff mechanisms

are optimal in this model. The stronger assumption demands that up and up − c be

convex, and that up − c crosses 0 exactly once.18

The costly verification model admits a new trade-off. Fixing some type distri-

bution F , it turns out that the principal can save on auditing costs by promising

to accept the proposal at types outside the support of F . This leads to a trade-off

since the acceptance-probability at such types of course affects the agent’s incentives

for actually acquiring F . An implication is that, on a two-sided cutoff mechanism,

the acceptance-probability on the middle interval may or may not be 0. A sufficient

17In fact, all other optimal mechanisms must agree with this one except on a set having F -
probability 0. This result naturally extends if we drop Assumption 1. For general payoffs up of the
principal, the mechanism that accepts if and only if the agent discloses a type θ such that up(θ) ≥ 0
is optimal. All other optimal mechanisms agree with this one except on a set having F -probability
0.

18This roughly says that the principal prefers a distribution to its mean-preserving contractions,
even when the principal is committed to always auditing the agent. The evidence model with
Assumption 1 is the special case where c = 0. The standing assumption in the literature is that c
is constant (Ben-Porath et al., 2014; Erlanson and Kleiner, 2020).
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condition for it to be 0 optimally is that all F ∈ F satisfy EF [up(θ)] ≤ 0. By contrast,

in the evidence model, it is always without loss to reject at types outside the support

of F .

6.3 Multiple alternatives

Appendix B.2 considers a more general model with an arbitrary finite set of alterna-

tives. The assumptions on the preferences are that the principal’s payoffs (the agent’s

payoffs) from each alternative are convex (concave) in the type, and that the agent

has a least preferred alternative that is independent of the type.19 We maintain the

assumptions on the agent’s costs K and the set of available distributions.

The main finding is that the characterization of optimal mechanisms as two-sided

cutoff mechanisms extends to multiple alternatives, in the following sense: The agent

is asked to disclose whether the type falls into a “low”, “intermediate”, or “high”

interval (and will always disclose truthfully). Disclosing an intermediate type leads

to the agent’s least-preferred alternative. Disclosing a low type leads to some lottery

over alternatives; disclosing a high type leads to a possibly different lottery. In this

sense, the result that optimal mechanisms require no more than three messages is

unrelated to the number of alternatives, but rather an implication of the assumptions

on the set of available distributions (its extreme points are binary) and the preferences

(utilities are linear in distributions, the principal’s payoffs are convex in the type, the

agent’s payoffs are concave in the type).

6.4 Learning about an underlying state

The interpretation of the model has so far been that the agent can affect the dis-

tribution of a payoff-relevant state—the type. In another interpretation, there is an

underlying payoff-relevant state ω that realizes either as 0 or 1, and that has mean

µ—in particular, the state is binary. The type distribution represents the distribution

of posterior means of ω that obtains when the agent learns about the state through

some information structure. The payoffs of up(θ) and ua(θ), respectively, are then

the principal’s and agent’s payoffs, respectively, from accepting the proposal when

19For binary alternatives, the existence of a type-independent least-preferred alternative implies
that the agent’s ordinal preferences are type-independent. In Appendix B.2, we do not assume
type-independent ordinal preferences.
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the agent ’s posterior mean of the state is θ.20

The agent can provide hard evidence about the realization of the posterior mean.

The assumption that this realization is verifiable is in line with the existing literature,

see e.g. Rappoport and Somma (2017) and Yoder (2022). We also assume that the

principal’s mechanism cannot condition on the experimental process that generated

the posterior.21 Linear acquisition costs K correspond to the class of posterior-

separable cost functions that are assumed in various contributions to the literature.22

Appendices

Appendix A Omitted proofs

A.1 Omitted proofs for Section 4

A.1.1 Auxiliary results

Given a mechanism x, recall that F∗(x) denotes the set of agent-optimal distributions

on x. We noted in Section 3 that F∗(x) is non-empty.

Lemma A.1. Let Assumptions 1 and 2 hold. For all mechanisms x, the function

F 7→ Up(x, F ) is continuous on F∗(x).

Proof of Lemma A.1. Let {Fn}n be a sequence in F∗(x) converging to F ∈ F∗(x).

Let λ =
∫
xua dF and, for all n, let λn =

∫
xua dFn. By agent-optimality, we have

20The distinction between whether θ is the agent’s or the principal’s posterior mean matters if up

is non-affine. Suppose the agent does not provide evidence. If θ is the agent’s posterior mean, the
principal’s forms a belief about the agent’s posterior mean. Denoting this belief by F , the principal’s
payoff from accepting is EF [up(θ)]. If θ is the principal’s posterior mean, the principal forms a belief
F about the state, yielding a payoff from accepting of up(EF [θ]).

21To briefly elaborate, suppose the agent covertly picks a mapping from the state space to some
abstract set of messages (an “experiment”). Each message m is associated with a posterior mean

θ̂(m) of the state. The agent’s choice of the experiment affects the distribution over messages, but

not the associated values θ̂(·) of the posterior mean. As long as payoffs and costs only depend on
posterior means, it is then a normalization to assume that each message is itself a posterior mean.
See also the discussion by Shishkin (2021) on the interpretation of evidence in the disclosure game.
In Shishkin’s model, the principal learns the experiment (which is modelled slightly differently)
when the agent discloses the realized message.

22See Mensch and Ravid (2022), Thereze (2022), and Yoder (2022) for some recent mechanism
design problems with transfers where information is endogenous and costs are posterior-separable.
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∫
(xua − k) dFn =

∫
(xua − k) dF . Since k is continuous, we have

∫
k dFn →

∫
k dF ,

and hence λn → λ.

We now distinguish two cases, depending on whether λ is strictly positive. First,

let λ > 0. In what follows, we understand n to be large enough such that λn > 0.

For all Borel sets B of reals, let

G(B) =
1

λ

∫
B

xua dF and Gn(B) =
1

λn

∫
B

xua dFn.

Since ua > 0, it follows that G and Gn are probability measures on the Borel subsets

of reals.

In an intermediate step, we claim that {Gn}n weak-∗ converges to G. Let B

be a closed set of reals. Since x is usc, we infer from Theorem 15.5 of Border and

Aliprantis (2006) that lim supn

∫
B
xua dFn ≤

∫
B
xua dF holds. Now λn → λ implies

lim supnGn(B) ≤ G(B). Since B was an arbitrary closed set, Theorem 15.3 of Border

and Aliprantis (2006) implies that {Gn}n weak-∗ converges to G, as promised.

The principal’s utilities from F and Fn, respectively, are given by
∫
xup dF and∫

xup dFn, respectively. Note that up/ua is (well-defined and) continuous. Since G

and Gn, respectively, are absolutely continuous with respect to F and Fn, respec-

tively, Theorem 13.23 of Border and Aliprantis (2006) implies that we can write the

principal’s utility from F and Fn, respectively, as λ
∫ up

ua
dG and λn

∫ up

ua
dGn, respec-

tively. Since {Gn}n weak-∗ converges to G, and since λn → λ, we conclude that the

principal’s utility from Fn converges to the utility from F , as promised.

Second, let λ = 0. Now define G and Gn, respectively, via G(B) =
∫
B
xua dF

and Gn(B) =
∫
B
xua dFn, respectively. Note that limn

∫
dGn = 0 holds. Since

G is absolutely continuous with respect to F , and since up/ua is continuous and

bounded, we can again invoke Theorem 13.23 of Border and Aliprantis (2006) to

write
∫
xup dF =

∫ up

ua
dG = 0. Similarly,∣∣∣∣∫ xup dFn

∣∣∣∣ ≤ ∫ ∣∣∣∣up

ua

∣∣∣∣xua dFn =

∫ ∣∣∣∣up

ua

∣∣∣∣ dGn ≤ sup

∣∣∣∣up

ua

∣∣∣∣ ∫ dGn → 0.

Thus the principal’s utility from Fn converges to the utility from F , as desired.

Given a mechanism x, let F∗
B(x) denote the set of binary agent-optimal distribu-

tions on x.
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Lemma A.2. Let Assumptions 1 and 2 hold. For all mechanisms x, both of the

following are true:

(1) The sets F∗(x) and F∗
B(x) are non-empty and compact.

(2) If F ∈ F∗(x), then there exists a probability measure ν supported on a subset

of F∗
B(x) such that all continuous linear functions Γ: F∗(x) → R satisfy

Γ(F ) =

∫
F̃∈F∗

B

Γ(F̃ ) dν(F̃ ).

Proof of Lemma A.2. Let FB denote the set of binary distributions in F . We know

from Winkler (1988) that FB is the set of extreme points of F . The agent’s utility

is linear and usc on the compact set F . Hence Bauer’s Maximum Principle (Border

and Aliprantis, 2006, Theorem 7.69) implies that F∗
B(x) is non-empty. Hence F∗(x)

is non-empty. Compactness of F∗(x) and F∗
B(x), respectively, follows from upper-

semicontinuity of the agent’s utility and compactness of F and FB, respectively.

Claim (2) follows from Choquet’s theorem (Phelps, 2001, p.14) if we can show that

the set of extreme points of F∗(x) is a subset of F∗
B(x). Let F be an extreme point

of F∗(x). Choquet’s theorem (Phelps, 2001, p. 14) implies that there is a probability

measure ν supported on FB and such that all continuous linear functions Γ: F → R
satisfy

Γ(F ) =

∫
F̃∈FB

Γ(F̃ ) dν(F̃ ). (A.1)

Now, we recall that k is continuous, that x is usc, and that ua is strictly positive

and continuous. Hence xua − k is usc. Hence Theorem 3.13 of Border and Aliprantis

(2006) lets us find a sequence {hn}n of continuous functions from [0, 1] to R converging

pointwise to xua − k. Since hn is continuous, the mapping F̃ 7→
∫
θ∈[0,1] hn(θ) dF̃ (θ)

is continuous (and obviously linear). Hence (A.1) implies∫
θ∈[0,1]

hn(θ) dF (θ) =

∫
F̃∈FB

(∫
θ∈[0,1]

hn(θ) dF̃ (θ)

)
dν(F̃ ).
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The Dominated Convergence theorem implies23∫
θ∈[0,1]

(x(θ)ua(θ)− k(θ)) dF =

∫
F̃∈FB

(∫
θ∈[0,1]

(x(θ)ua(θ)− k(θ)) dF̃ (θ)

)
dν(F̃ ).

Since F is agent-optimal on x, the previous display implies ν-almost all F̃ satisfy∫
θ∈[0,1](x(θ)ua(θ)− k(θ)) dF =

∫
θ∈[0,1](x(θ)ua(θ)− k(θ)) dF̃ . Hence ν is supported on

a subset of binary agent-optimal distributions, meaning a subset of F∗
B(x). We know

infer from (A.1) that all continuous linear functions Γ: F → R satisfy

Γ(F ) =

∫
F̃∈F∗

B(x)

Γ(F̃ ) dν(F̃ ). (A.2)

Now recall that F is assumed to be an extreme point of F∗(x). Hence (A.2) and

Proposition 1.4 of Phelps (2001) together imply that ν is supported on F . Since ν is

supported on a subset of F∗
B(x), we conclude F ∈ F∗

B(x), as promised.

We next provide a lemma that collects some useful properties of mechanism-

distribution pairs that leave the principal with a strictly positive utility.

Lemma A.3. Let Assumptions 1 and 2 hold. Let x be a mechanism. Let F with

support {θ0, θ1} be a binary distribution in F . If Up(x, F ) > 0, then all of the following

hold:

(1) u−1
p (0) ∈ (θ0, θ1).

(2) F is non-degenerate.

(3) −x(θ0)up(θ0)

u−1
p (0)−θ0

≤ x(θ∗1)up(θ1)

θ1−u−1
p (0)

.

Proof of Lemma A.3. We will show the contrapositive: If one of the conditions in the

claim fails to hold, then Up(x, F ) ≤ 0. Recall that Up(x, F ) = EF [x(θ)up(θ)] holds.

Assumption 1 implies µ ≤ u−1
p (0). Hence, if θ1 ≤ u−1

p (0) or if F is degenerate, then

F is supported on points for which up is weakly negative, implying EF [x(θ)up(θ)] ≤ 0.

In what follows, we may thus assume θ1 > u−1
p (0) and that F is non-degenerate.

Recalling u−1
p (0) ≥ µ, we also find u−1

p (0) ≥ µ > θ0 as else the mean of F would not

be µ.

23Since xua − k is usc and bounded, the mapping F̃ 7→
∫
θ∈[0,1]

(x(θ)ua(θ) − k(θ)) dF̃ is usc and

bounded. Hence the integral
∫
F̃∈FB

(∫
θ∈[0,1]

(x(θ)ua(θ)− k(θ)) dF̃ (θ)
)
dν(F̃ ) is well-defined and the

Dominated Convergence theorem can be applied.
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Let us now turn to the inequality

−x(θ0)up(θ0)

u−1
p (0)− θ0

≤ x(θ1)up(θ1)

θ1 − u−1
p (0)

. (A.3)

Consider the piece-wise affine function ω : [θ0, θ1] → R defined by

∀θ∈[0,1], ω(θ) =

x(θ0)up(θ0)
u−1
p (0)−θ

u−1
p (0)−θ0

, if θ ∈ [θ0, u
−1
p (0))

x(θ1)up(θ1)
θ−u−1

p (0)

θ1−u−1
p (0)

, if θ ∈ [u−1
p (0), θ1].

(A.4)

If (A.3) fails, then ω is concave. Moreover, if θ ∈ {θ0, θ1}, then ω(θ) = x(θ)up(θ).

Since {θ0, θ1} is the support of F , we conclude

EF [x(θ)up(θ)] = EF [ω(θ)] ≤ ω(µ).

We also know that θ0 < µ ≤ u−1
p (0) < θ1 holds. Since ω is weakly increasing, we

have ω(µ) ≤ ω(u−1
p (0)). Inspection of ω shows ω(u−1

p (0)) = 0. Thus, if (A.3) fails,

then EF [x(θ)up(θ)] ≤ 0.

The next lemma is an easy corollary of Lemma A.3. It provides a sufficient

condition such that, on a given mechanism, the principal prefers mean-preserving

spreads to mean-preserving contractions.

Lemma A.4. Let Assumptions 1 and 2 hold. Let x be a two-sided cutoff mechanism

with parameters (θ0, θ1, α, β, γ) such that µ ∈ (θ0, θ1). Let F denote the binary distri-

bution in F whose support is {θ0, θ1}. Let F ′ and F ′′ be two binary distributions in

F in such that F is an MPC of F ′, and F ′ is an MPC of F ′′. If Up(x, F ) > 0, then

Up(x, F
′′) ≥ Up(x, F

′).

Proof of Lemma A.4. Since Up(x, F ) > 0, Lemma A.3 implies u−1
p (0) ∈ (θ0, θ1) and

−x(θ0)up(θ0)

u−1
p (0)− θ0

≤ x(θ1)up(θ1)

θ1 − u−1
p (0)

. (A.5)

Consider the function ω̄ : [0, 1] → R defined as follows (the function is well-defined
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since u−1
p (0) ∈ (θ0, θ1)):

∀θ∈[0,1], ω̄(θ) =



x(θ0)up(θ), if θ < θ0

x(θ0)up(θ0)
u−1
p (0)−θ

u−1
p (0)−θ0

, if θ ∈ [θ0, u
−1
p (0))

x(θ1)up(θ1)
θ−u−1

p (0)

θ1−u−1
p (0)

, if θ ∈ [u−1
p (0), θ1]

x(θ1)up(θ), if θ > θ1.

Assumption 1 and (A.5) together imply that ω̄ is weakly convex.

We next claim that ω̄(θ) agrees with x(θ)up(θ) at all points θ in the supports of

F ′ and F ′′. To see this, observe that since F , F ′ and F ′′ are binary the assumptions

on the MPC-ordering implies

min suppF ′′ ≤ min suppF ′ ≤ θ0 ≤ θ1 ≤ max suppF ′ ≤ max suppF ′′.

Recall also that x is a two-sided cutoff mechanism with cutoffs θ0 and θ1. In partic-

ular, we have that x is constant on [0, θ0] and [θ1, 1]. The claim follows from these

observations.

By the previous paragraph, we can write

Up(x, F
′) = EF ′ [x(θ)up(θ)] = EF ′ [ω̄(θ)] .

The function ω̄ is convex, and F ′′ is an MPS of F ′. Hence the expression in the

previous display is at most as great as EF ′′ [ω̄(θ)]. By rewriting this expectation in

the same manner as above, we find that it equals Up(x, F
′′). Thus we have shown

Up(x, F
′′) ≥ Up(x, F

′), as promised.

Given a two-sided cutoff mechanism x, let
¯
θx = inf{θ ∈ [0, 1] : x(θ) = minx} and

θ̄x = sup{θ ∈ [0, 1] : x(θ) = minx}. (The minimum is well-defined since a two-sided

cutoff mechanism assumes at most three distinct values.)

Lemma A.5. Let x be a two-sided cutoff mechanism such that µ ∈ (
¯
θx, θ̄x). If F is

agent-optimal on x and assigns non-zero probability to (
¯
θx, θ̄x), then the support of F

is a subset of [
¯
θx, θ̄x].

Proof of Lemma A.5. We shall prove min suppF ≥
¯
θx; a similar argument establishes

max suppF ≤ θ̄x. Towards a contradiction, let min suppF <
¯
θx. Let β = minx. By
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definition of
¯
θx, it follows that x is constantly equal to some probability α ∈ (β, 1]

on [0,
¯
θx].

Let f0 and f1, respectively, denote the probabilities that F assigns to the subinter-

vals [0,
¯
θx] and (

¯
θx, θ̄x), respectively. We have f0 > 0 and f1 > 0. Let θ0 = EF [θ|θ ≤

¯
θx] and θ1 = EF [θ|θ ∈ (

¯
θx, θ̄x)]. Let F̃ denote the distribution that assigns f0 to θ0, f1

to θ1, and with probability (1− f0− f1) agrees with the conditional distribution of F

on [θ̄x, 1].
24 Formally, for all θ, let F̃ (θ) = f01(θ≥θ0)+f11(θ≥θ1)+(F (θ)−f0−f1)1(θ≥θ̄x).

Since x is a two-sided cutoff mechanism, it is constant on each of the subintervals

[0,
¯
θx], (

¯
θx, θ̄x) and [θ̄x, 1]. Since ua is concave and K is decreasing with respect to

MPCs, it follows that Ua(x, F̃ ) ≥ Ua(x, F ) holds. We shall find a distribution F̂

such that Ua(x, F̂ ) > Ua(x, F̃ ); this contradicts the agent-optimality of F and hence

completes the argument.

For a number ε > 0 to be chosen in a moment, let ηε > 0 solve θ0 + ηε =
f0θ0+εθ1

f0+ε
.

Let F̂ denote the distribution that assigns f0 + ε to θ0 + ηε, f1 − ε to θ1, and with

probability (1 − f0 − f1) agrees with the conditional distribution of F on [θ̄x, 1].

Formally, for all θ, let F̂ (θ) = (f0+ε)1(θ≥θ0+ηε)+(f1−ε)1(θ≥θ1)+(F (θ)−f0−f1)1(θ≥θ̄x).

If ε is sufficiently small, then F̃ is a well-defined distribution, and in fact an MPC of

F̂ . Moreover, for sufficiently small ε we have θ0 + ηε <
¯
θx. Fixing such a value of ε,

we complete the argument by showing Ua(x, F̂ ) > Ua(x, F̃ ).

Since F̂ is an MPC of F̃ , and since K decreases with respect to MPCs, it suffices

to show EF̂ [x(θ)ua(θ)]− EF̃ [x(θ)ua(θ)] > 0. This difference spells out to

(f0 + ε)αua(θ0 + ηε) + (f1 − ε)βua(θ1)− f0αua(θ0)− f1βua(θ1)

=(f0 + ε)αua(θ0 + ηε)− f0αua(θ0)− εβua(θ1).

Since θ0 + ηε =
f0θ0+εθ1

f0+ε
, and since ua is concave, a lower bound on the difference in

the previous display is

(f0 + ε)α

(
f0ua(θ0)

f0 + ε
+

εua(θ1)

f0 + ε

)
− f0αua(θ0)− εβua(θ1)

=ε(α− β)ua(θ1).

Since α > β (and ε > 0 and ua > 0), this lower bound is strictly positive.

24If (1 − f0 − f1) = 0, we understand F̃ to simply mean the binary distribution that assigns f0
to θ0 and f1 to θ1.
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The following corollary is easily obtained from Lemma 4.1 and Lemma 4.2; we

omit the proof.

Corollary A.6. Let Assumptions 1 and 2 hold. Let x be a mechanism such that

Ūp(x) > 0. There exist θ∗0 and θ∗1, and probabilities α and γ, such that 0 ≤ θ0 <

µ ≤ u−1
p (0) < θ1 ≤ 1 and γ > 0, and such that two-sided cutoff mechanism x∗ with

parameters (θ∗0, θ
∗
1, α, 0, γ) satisfies Ūp(x

∗) ≥ Ūp(x). Moreover, the binary distribution

F ∗ with support {θ∗0, θ∗1} and mean µ is agent-optimal on x∗ and satisfies Ūp(x
∗) =

Up(x
∗, F ∗).

Lastly, we prove the following claim made in the paragraph following Assump-

tion 3.

Proposition A.7. Let Assumptions 1 and 2 hold.

(1) For all ε > 0, if K(F̄ ) is sufficiently close to 0, then there is a one-sided cutoff

mechanism x such that Ūp(x) ≥ µup(1)− ε.

(2) If µ = u−1
p (0), then there is a one-sided cutoff mechanism x such that Ūp(x) > 0.

Proof of Proposition A.7. Beginning with claim (1), consider the one-sided cutoff

mechanism x with cutoff 1. On x, the agent picks F to maximize F ({1})ua(1)−K(F ),

where F ({1}) denotes the probability assigned to {1}. If F is agent-optimal, a

lower bound on Ua(x, F ) is Ua(x, F̄ ) = µua(1) − K(F̄ ). Since all type distribu-

tions are MPCs of F̄ , and since K is decreasing with respect to MPCs, we have

0 ≤ K(F ) ≤ K(F̄ ) for all F . It follows that ifK(F̄ ) is sufficiently small then all agent-

optimal F satisfy F ({1}) ≥ µ− ε
up(1)

. Hence Up(x, F ) ≥ F ({1})up(1) ≥ µup(1)− ε.

Now consider (2). For a number ε > 0 to be chosen in a moment, and consider

the binary distribution Fε that assigns probability 1/2 to each of the points µ−ε and

µ+ ε. Let δµ denote the degenerate distribution on µ. Consider the one-sided cutoff

mechanism xε with cutoff µ + ε. Among distributions which assign no probability

to points above µ + ε, on xε the distribution δµ is optimal for the agent (since it

minimizes acquisition costs). If ε is sufficiently small, then continuity of ua and K

imply Ua(xε, Fε) > K(δµ). Fix such a number ε. Since K ≥ 0, it follows that all

agent-optimal distributions on xε assign non-zero probability to points above µ + ε.

The principal’s payoff from accepting at these points is strictly positive and bounded

away from 0.
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A.1.2 Proof of Lemma 4.1

Proof of Lemma 4.1. According to Lemma A.2, the set F∗(x) is non-empty and

compact. Since Up(x, ·) is continuous on F∗(x) (Lemma A.1), we conclude that

Up(x, F ) = Ūp(x) holds for some F ∈ F∗(x). In view of Lemmata A.1 and A.2, there

exists F ∗ ∈ F∗
B(x) such that Ūp(x) = Up(x, F ) = Up(x, F

∗).

A.1.3 Proof of Lemma 4.2

Proof of Lemma 4.2. Recall that our candidate two-sided cutoff mechanism x∗ is de-

fined as follows:

∀θ∈[0,1], x∗(θ) =


x(θ∗0), if θ ≤ θ∗0

0, if θ∗0 < θ < θ∗1

x(θ∗1), if θ∗1 ≤ θ.

(A.6)

Lemma A.3 implies θ∗1 > u−1
p (0) ≥ µ > θ∗0 and x(θ∗1) > 0. By assumption of the

lemma we trying to prove, we have Ūp(x) = Up(x, F
∗). Note that x and x∗ agree

on the support of F ∗, implying Up(x, F
∗) = Up(x

∗, F ∗). Hence it suffices to show

Ūp(x
∗) ≥ Up(x

∗, F ∗).

Let us invoke Lemma 4.1 to find an agent-optimal distribution F on x∗. We

distinguish two cases.

First, let x(θ∗0) > 0.

In a first subcase, suppose F assigns probability 0 to (θ∗0, θ
∗
1). Since {θ∗0, θ∗1}

is the support of F ∗, it follows that F is a mean-preserving spread of F ∗. Hence

0 < Up(x, F
∗) = Up(x

∗, F ∗) and Lemma A.4 imply Up(x
∗, F ∗) ≤ Up(x

∗, F ). Since F

was agent-optimal on x∗, we conclude Up(x
∗, F ∗) ≤ Ūp(x

∗) and we are done.

In a second subcase, suppose F assigns non-zero probability to (θ∗0, θ
∗
1). Since

(θ∗0, θ
∗
1) = {θ ∈ [0, 1] : x∗(θ) = 0}, Lemma A.5 implies that F is supported on a

subset of [θ∗0, θ
∗
1]. In particular, we have x∗ ≤ x on the support of F and F ∗. Recall

also that F is agent-optimal on x∗, and that F ∗ is agent-optimal on x. Hence

Ua(x, F ) ≤ Ua(x, F
∗) ≤ Ua(x

∗, F ∗) ≤ Ua(x
∗, F ).

Since x∗ ≤ x holds on the support of F and F ∗, we conclude that the inequalities

in the previous display are equalities. In particular, we conclude that F ∗ is agent-
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optimal on x∗. Hence Up(x
∗, F ∗) ≤ Ūp(x

∗) and we are done.

At this point we have completed the proof for the case x(θ∗0) > 0. Now let

x(θ∗0) = 0. Since EF [θ] = µ < θ∗1, it follows that F assigns non-zero probability to

[0, θ∗1). Since [0, θ
∗
1) = {θ ∈ [0, 1] : x∗(θ) = 0}, we conclude from Lemma A.5 that F is

supported on a subset of [0, θ∗1]. In particular, the mechanism x∗ is weakly below x at

all points in the support of F . From here the proof can be completed as above.

A.1.4 Proof of Theorem 4.3

Proof of Theorem 4.3. We first prove abstractly the existence of an optimal two-sided

cutoff mechanism.

Claim A.8. There exists a two-sided cutoff mechanism x∗ such that all mechanisms

x satisfy Ūp(x) ≤ Ūp(x
∗)

Proof of Claim A.8. Let P denote the set of possible parameters of two-sided cutoff

mechanisms; that is P is the set of vectors (θ0, θ1, α, β, γ) such that 0 ≤ θ0 ≤ θ1 ≤ 1

and 0 ≤ β ≤ α ≤ 1 and β ≤ γ ≤ 1. Given ρ ∈ P, we denote the associated

two-sided cutoff mechanisms by xρ. Given ρ = (θ0, θ1, α, β, γ), let Fρ denote the

binary distribution with support {θ0, θ1} and mean µ, whenever this distribution is

well-defined (which is whenever µ ∈ [θ0, θ1]).

According to Corollary A.6, for all mechanisms x such that Ūp(x) > 0, there

exists ρ ∈ P such that Ūp(xρ) ≥ Ūp(x). Since a mechanism x such that Ūp(x) > 0

is assumed to exist, it suffices to show that ρ 7→ Ūp(xρ) admits a maximizer over

P . To that end, let M = supρ∈P Ūp(xρ). Let {ρn}n be a sequence in P such that

Ūp(xρn) → M as n → ∞. By invoking Corollary A.6, we may assume that for all

n the binary distribution Fρn is well-defined, agent-optimal on xρn , and such that

Up(xρn , Fρn) = Ūp(xρn) holds. By possibly passing to a convergent subsequence, we

may assume that {ρn}n converges to a point ρ ∈ P.

A moment’s thought reveals that as n → ∞ we have Up(xρn , Fρn) → Up(xρ, Fρ).

Since Up(xρn , Fρn) = Ūp(xρn) holds for all n, we infer M = Up(xρ, Fρ). To complete

the proof, it thus suffices to argue that Fρ is agent-optimal on xρ.

To that end, let F̃ ∈ F be an arbitrary binary distribution. Since there always

exists an agent-optimal distribution that is binary, it suffices to show Ua(xρ, F̃ ) ≤
Ua(xρ, Fρ). Let {θ̃0, θ̃1} denote the support of F̃ . We shall use the following easily

established observation: Fixing an arbitrary θ ∈ [0, 1], the probability xρn(θ) fails
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to converge to xρ(θ) only if θ is a discontinuity point of xρ and in the interior of

(0, 1); that is, only if θ ∈ {θ0, θ1} ∩ (0, 1). Now, for a number ε > 0 to be chosen

in a moment, let θ̃0,ε = max(θ̃0 − ε, 0) and θ̃1,ε = min(θ̃1 + ε, 1). Let F̃ε denote the

binary distribution supported on {θ̃0,ε, θ̃1,ε} and having mean µ. By the previous

observation, as n → ∞ we have Ua(xρn , F̃ε) → Ua(xρ, F̃ε). On the other hand, as

ε → 0, we have Ua(xρ, F̃ε) → Ua(xρ, F̃ ). Agent-optimality of Fρn on xρn implies

Ua(xρn , F̃ε) ≤ Ua(xρn , Fρn). We clearly have Ua(xρn , Fρn) → Ua(xρ, Fρ). In summary,

we find Ua(xρ, F̃ ) ≤ Ua(xρ, Fρ), as promised.

To complete the proof, we show that there exists an optimal two-sided cutoff

mechanism x∗ whose parameters (θ∗0, θ
∗
1, α

∗, β∗, γ∗) are such that β∗ = 0, γ∗ = 1, and

θ∗0 < µ ≤ u−1
p (0) < θ∗1.

Let x be a two-sided cutoff mechanism as in the conclusion of Claim A.8. By

appealing to Corollary A.6 we may assume that the parameters of x are (θ0, θ1, α, 0, γ),

where θ0 < µ ≤ u−1
p (0) < θ1 and γ > 0. Moreover, the binary distribution F ∈ F

with support {θ0, θ1} is agent-optimal on x and satisfies Up(x, F ) = Ūp(x).

To complete the proof, it suffices to find a two-sided cutoff mechanism x∗ such

that Ūp(x
∗) ≥ Ūp(x), and such that the acceptance probability on the right-most

interval is 1. There is nothing to show if γ = 1, so let γ < 1. Let x∗ denote the

two-sided cutoff mechanism obtained from x by raising the acceptance probability on

the right-most subinterval from γ to 1 (and leaving all other acceptance probabilities

unchanged). Note that u−1
p (0) ≤ θ1 implies Up(x, F ) ≤ Up(x

∗, F ).

Let us fix an arbitrary agent-optimal binary distribution F ∗ on x∗ (existence

being guaranteed by Lemma 4.1). In view of Ūp(x) = Up(x, F ) ≤ Up(x
∗, F ), we may

complete the proof by showing Up(x
∗, F ∗) ≥ Up(x

∗, F ). To show that this inequality

holds, it is in turn sufficient to show that F ∗ is an MPS of F (for then the desired

inequality follows from Lemma A.4). To that end, let the support of F ∗ be denoted

{θ∗0, θ∗1}, where θ∗0 ≤ θ∗1. Let f
∗ denote the probability that F ∗ assigns to θ∗1.

Recall that F is agent-optimal on x. Note that the agent’s utility from F strictly

increases when passing from x to x∗ since F assigns non-zero probability to θ1. Hence,

for F ∗ to be agent-optimal on x∗, we must have θ∗1 ≥ θ1 and f ∗ > 0. Since θ∗1 ≥ θ1 > µ,

we thus also have θ∗0 < θ1 and f ∗ < 1.

Note that if θ∗0 ≤ θ0, then θ∗1 ≥ θ1 implies that F ∗ is a mean-preserving spread of

F , and we are done. We complete the proof by showing that a contradiction obtains

if θ∗0 > θ0. Let θ
∗
0 > θ0.
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Since θ∗0 ∈ (θ0, θ1), it follows from Lemma A.5 that F ∗ is supported on {θ∗0, θ1}.
Now, agent-optimality of F ∗ on x∗ and agent-optimality of F on x together im-

ply Ua(x
∗, F ∗) + Ua(x, F ) ≥ Ua(x

∗, F ) + Ua(x, F
∗). This inequality rearranges to

EF ∗ [(x∗(θ)− x(θ))ua(θ)] ≥ EF [(x
∗(θ)− x(θ))ua(θ)]. The mechanisms x∗ and x differ

only at points above θ1. Both F ∗ and F have θ1 as their largest realization. Hence

the previous inequality simplifies to f ∗(1 − γ)ua(θ1) ≥ f(1 − γ)ua(θ1). Since γ < 1

and ua > 0, we conclude f ∗ ≥ f . Now, since F and F ∗ both have θ1 as their largest

realization and mean µ, the inequality f ∗ ≥ f implies that the smallest realization of

F ∗, namely θ∗0}, must be weakly than the smallest realization of F , namely θ0. This

contradicts θ∗0 > θ0.

A.2 Omitted proofs for Section 5

A.2.1 Equilibrium definition

We denote the set of Borel probability measures on [0, 1] by ∆[0, 1]. Recall that

E = {[0, 1]} ∪ (
⋃

θ∈[0,1]{{θ}} denotes the set of all pieces of evidence that the agent

can conceivably possess.

A strategy of the agent specifies a type distribution F ∈ F and a Borel-measurable

function σA : [0, 1] → [0, 1]. The strategy of the principal specifies a probability

σP ([0, 1]) and a Borel-measurable function σP : [0, 1] → [0, 1]. The principal’s beliefs

are given by a function β : E → ∆[0, 1], where for all Borel-subsets B of [0, 1] the

mapping θ 7→ β(B|θ) is Borel-measurable.

Definition 2. Let (F, σA, σP , β) be a tuple consisting of a strategy of the agent,

and a strategy and beliefs of the principal. The tuple (F, σA, σP , β) is a (perfect

Bayesian) equilibrium of the evidence-disclosure game if all of the following hold.

(1) The cdf F satisfies

F ∈ argmax
F ′∈F

(EF ′ [(σA(F, θ)σP (θ) + (1− σA(F, θ))σP ([0, 1]))ua(θ)]−K(F ′)) .

(2) For all θ ∈ [0, 1] the strategy σA satisfies

σA(θ) ∈ argmax
y∈[0,1]

((yσP (θ) + (1− y)σP ([0, 1]))ua(θ)) .

(3) For all e ∈ E the strategy σP satisfies σP (e) ∈ argmaxx∈[0,1] xEβ(·|e)[up(θ)].
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(4) For all Borel-subsets B of [0, 1] the beliefs β satisfy∫
θ∈[0,1]

1(θ∈B) dF (θ)

=

∫
θ∈[0,1]

(β(B|θ)σA(θ) + β(B|[0, 1])(1− σA(θ)))) dF (θ).

(5) For all θ ∈ suppF , if σA(θ) > 0, then β(·|θ) is the Dirac measure on {θ}.

Conditions (1) and (2) are that the agent plays a best response to the principal’s

strategy. Condition (3) is that the principal plays a best response to the agent’s

strategy and given the principal’s own beliefs. Condition (4) states that the principal’s

belief is consistent with Bayes’ rule. Condition (5) states that if the agent discloses

a type in the support of F that is sometimes disclosed along the equilibrium path,

then the principal’s belief is degenerate on the type. In a truth-leaning equilibrium,

defined next, the principal’s belief after disclosure is degenerate on the type even at

all types, regardless of whether they are in the support of F or whether these types

disclose.

Definition 3. An equilibrium (F, σA, σP , β) is truth-leaning if for all θ ∈ [0, 1] the

probability measure β(·|θ) is the Dirac measure on {θ}.

A.2.2 Proof of Proposition 5.1

Proof of Proposition 5.1.

Claim A.9. In all truth-leaning equilibria exactly one of the following is true:

(1) The principal’s equilibrium utility is 0.

(2) The agent picks a distribution F satisfying EF [up(θ)] > 0. If the agent does

not disclose the type, the principal accepts with probability 1. Along the path of

play, the proposal is accepted with probability 1.

Proof of Claim A.9. Let (F, σA, σP , β) be a truth-leaning equilibrium. For all θ, let

x(θ) = σA(θ)σP (θ)+ (1−σA(θ))σP ([0, 1]) denote the induced acceptance probability.

Suppose the principal’s utility is strictly positive, meaning EF [x(θ)up(θ)] > 0.

Note that this implies max suppF > u−1
p (0), and hence min suppF < µ ≤ u−1

p (0).

We show that the agent never discloses the type, and that in equilibrium the proposal

is always accepted.

32



Note that if the type realizes strictly above u−1
p (0), then the agent can always

disclose it, following which the principal’s truth-leaning beliefs and best response

imply that the proposal will be accepted with probability 1. Hence we have x(θ) = 1

for all θ ∈ (u−1
p (0), 1].

Most of the remaining work shall go towards establishing that

EF [x(θ)|θ < u−1
p (0)] = 1 (A.7)

holds; note that the conditional expectation is well-defined since min suppF < u−1
p (0)

holds. Before tackling the proof of this equality, we argue that it completes the proof

of Claim A.9. The equality (A.7) implies that x(θ) = 1 holds for F -almost all θ ∈
[0, u−1

p (0)]. Hence EF [up(θ)] = EF [x(θ)up(θ)] > 0. At a type θ ∈ suppF ∩ [0, u−1
p (0)),

the principal’s truth-leaning beliefs imply that if θ discloses, then the principal rejects

the proposal. Hence F -almost all types in suppF ∩ [0, u−1
p (0)) do not disclose. Hence,

when the agent does not disclose, the principal accepts with probability 1. It follows

that the proposal is accepted with probability 1.

It remains to prove (A.7). Towards a contradiction, let

EF [x(θ)|θ < u−1
p (0)] < 1.

Let θ1 = EF [θ|θ > u−1
p (0)], which is well-defined since max suppF > u−1

p (0)

holds. Let p denote the probability F assigns to the interval (u−1
p (0), 1]. Note that

min suppF < u−1
p (0) implies p < 1. Let θ0 = EF [θ|θ ≤ u−1

p (0)]. Let F̃ denote the

distribution that assigns probability p to θ1, and with probability 1 − p agrees with

the conditional distribution of F below u−1
p (0). 25 Given ε > 0 to be chosen in a

moment, let ηε = θ1− pθ1+εθ0
p+ε

. Let F̂ be the distribution that assigns probability p+ε

to θ1−ηε, and with probability 1−p−ε agrees with the conditional distribution of F̃

below u−1
p (0). If ε is sufficiently small, then θ1 − ηε > u−1

p (0) and F̂ is a well-defined

cdf and an MPC of F̃ .

Note that EF [x(θ)ua(θ)] − K(F ) ≤ EF̃ [x(θ)ua(θ)] − K(F̃ ) holds since x is con-

stant on (u−1
p (0), 1]. We shall obtain the desired contradiction by arguing that

EF̃ [x(θ)ua(θ)] − K(F̃ ) < EF̂ [x(θ)ua(θ)] − K(F̂ ) holds. Since K decreases with re-

spect to MPCs, we have K(F̂ ) ≤ K(F̃ ). Thus it suffices to show EF̂ [x(θ)ua(θ)] −
25That is, for all reals θ let F̃ (θ) = p1(θ≥θ1) +min(1− p, F (θ)).
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EF̃ [x(θ)ua(θ)] > 0.

For future reference, note that since ua > 0, the inequality EF [x(θ)|θ < u−1
p (0)] <

1 implies

EF [x(θ)ua(θ)|θ < u−1
p (0)] < EF [ua(θ)|θ < u−1

p (0)].

The previous inequality in turn implies

EF [x(θ)ua(θ)|θ ≤ u−1
p (0)] < EF [ua(θ)|θ ≤ u−1

p (0)]. (A.8)

We now show EF̂ [x(θ)ua(θ)] − EF̃ [x(θ)ua(θ)] > 0. Since x is constantly equal to 1

strictly above u−1
p (0), we have

EF̂ [x(θ)ua(θ)]− EF̃ [x(θ)ua(θ)]

=(p+ ε)ua(θ1 − ηε) + (1− p− ε)EF̂ [x(θ)ua(θ)|θ ≤ u−1
p (0)]

−pua(θ1)− (1− p)EF̃ [x(θ)ua(θ)|θ ≤ u−1
p (0)].

Note that the distributions of F̃ and F̂ agree conditional on realizations below u−1
p (0).

Hence the above term simplifies to

(p+ ε)ua(θ1 − ηε)− pua(θ1)− εEF̃ [x(θ)ua(θ)|θ ≤ u−1
p (0)]. (A.9)

By concavity of ua and the choice of ηε, a lower bound on this difference is

(p+ ε)

(
p

p+ ε
ua(θ1) +

ε

p+ ε
ua(θ0)

)
− pua(θ1)− εEF̃ [x(θ)ua(θ)|θ ≤ u−1

p (0)]

=ε
(
ua(θ0)− EF̃ [x(θ)ua(θ)|θ ≤ u−1

p (0)]
)
.

(A.10)

We next invoke (A.8) to infer

ua(θ0)− EF̃ [x(θ)ua(θ)|θ ≤ u−1
p (0)] > ua(θ0)− EF̃ [ua(θ)|θ ≤ u−1

p (0)]. (A.11)

By concavity of ua and the definition of θ0, we have ua(θ0) ≥ EF̃ [ua(θ)|θ ≤ u−1
p (0)].

Collecting our work, we conclude that EF̂ [x(θ)ua(θ)] > EF̃ [x(θ)ua(θ)] holds, as

promised.
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Claim A.10. There exists a truth-leaning equilibrium in which the principal’s utility

is 0.

Proof of Claim A.10. Below, we will distinguish between two cases, and define the

equilibrium differently depending on the case. In both cases, however, we have the

following: If the agent disclose the type realization, the principal accepts if and only if

revealed type is weakly above u−1
p (0). If the agent discloses no evidence, the principal

rejects. The agent always discloses the type.

Let x : [0, 1] → [0, 1] denote the acceptance probability induced by these strategies

and when the agent always disclses the type (this is nothing but the one-sided cutoff

mechanism with cutoff u−1
p (0)). Let F ∈ argmaxF̂∈F U(x, F̂ ). We distinguish two

cases.

First, suppose max suppF < u−1
p (0). In this case, using the fact that K de-

creases with respect to MPCs, the degenerate distribution on µ must also be in

argmaxF̂∈F Ua(x, F̂ ). We now complete the description of equilibrium as follows:

The agent acquires the degenerate distribution on µ, and if the agent does not dis-

close the type the principal’s belief is degenerate on µ. One may verify that this

yields a truth-leaning equilibrium in which the principal’s utility is 0.

Second, suppose max suppF ≥ u−1
p (0). By retracting the arguments that estab-

lished Claim A.9, one may verify that there is a cdf F̃ in argmaxF̂∈F Ua(x, F̂ ) such

that max supp F̃ = u−1
p (0) (but these arguments cannot be used to infer max suppF =

u−1
p (0)). We now complete the description of equilibrium as follows: The agent ac-

quires the distribution F̃ , and if the agent does not disclose the type the principal’s

belief is that the type is distributed according to F̃ . Since max supp F̃ = u−1
p (0), we

necessarily have EF̃ [up(θ)] ≤ 0, and hence it is rational for the principal to reject if

the agent does not disclose. Hence the agent has a best response of always disclosing.

Lastly, since max supp F̃ = u−1
p (0), it is also clear that the principal’s utility is 0.

A.2.3 Proof of Proposition 5.3

Proof of Proposition 5.3. Let h : [0, 1] → R be a function that is convex, continuous

(at the boundary), strictly increasing, and such that h(0) ≤ 4
3
and h(1

2
) = 0 and

h(1) = 4
3
. Fixing such a function h, we next define our candidate environment (in case
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the reader prefer a specific example, let h be defined for all θ by h(θ) = 16
9

(
θ2 − 1

4

)
).

Let t0 solve h(t0) = 1.

Now let µ = 1/2. For all θ, let

up(θ) = max

(
h(θ)− 1,

1

3

(
θ

t0
− 1

))
and k(θ) = max(h(θ), 0) and ua(θ) = 1. For all F , let K(F ) = EF [k(θ)].

We omit the straightforward verification that Assumptions 1 and 2 hold. For later

reference, note that all F ∈ F satisfy

EF [up(θ)] ≤ EF̄ [up(θ)] =
h(1)− 1

2
− 1

2

1

3
= 0. (A.12)

We also note that u−1
p (0) = t0 holds, and that all θ ∈ [u−1

p (0), 1] satisfy up(θ) =

−(ua(θ) − k(θ)). Lastly, for all mechanisms x the degenerate distribution δµ on µ

satisfies Ua(x, δµ) ≥ 0.

The next claim shows that Assumption 3 holds.

Claim A.11. The two-sided mechanism x with parameters (θ0, θ1, α, β, γ) = (0, 1, 1
2
, 0, 1)

satisfies Ūp(x) > 0.

Proof of Claim A.11. Direct computation shows Up(x, F̄ ) = 1
2

(
h(1)− 1− 1

2
1
3

)
= 1

4
1
3
.

Hence we can show Ūp(x) > 0 by showing that F̄ is uniquely agent-optimal on x. Let

v(θ) = 1
2
1(θ=0) + 1(θ=1) − max(h(θ), 0). The agent’s utility from a type distribution

F is EF [x(θ)ua(θ) − k(θ)] = EF [v(θ)]. One may verify that v is weakly below the

function v̂ defined by v̂(θ) = 1
2
−
(
1
3
− 1

2

)
θ. (The function v̂ is the concave closure of

v.) In fact, note that v is strictly below v̂ at all points in [0, 1] except 0 and 1. Hence

F̄ is the unique agent-optimal distribution on x.

We next prove the following auxiliary claim.

Claim A.12. Let x be a mechanism, let F be binary and agent-optimal on x. If all

θ ∈ [0, u−1
p (0)) satisfy x(θ) ∈ {0, 1}, then Up(x, F ) ≤ 0.

Proof of Claim A.12. Let the support of F be {θ0, θ1}, where θ0 ≤ θ1. If θ1 ≤ u−1
p (0)

or F is degenerate, then clearly Up(x, F ) ≤ 0. Thus let θ1 > u−1
p (0) and let F be

non-degenerate. Since µ ≤ u−1
p (0), we have θ0 < u−1

p (0), and hence x(θ0) ∈ {0, 1}. If
x(θ0) = 1, then θ1 ≥ u−1

p (0) and (A.12) together imply Up(x, F ) = EF [x(θ)up(θ)] ≤
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EF [up(θ)] ≤ 0. Thus let x(θ0) = 0. Recall that up = −(ua − k) holds at points

above u−1
p (0). Hence the agent’s utility satisfies Ua(x, F ) = EF [x(θ)ua(θ)]−K(F ) ≤

−EF [x(θ)up(θ)]. Hence the fact that the agent weakly prefers F to the degenerate

distribution on µ implies V (x, F ) = EF [x(θ)up(θ)] ≤ 0.

The next claim concerns part (2) of the proposition.

Claim A.13. Let x be a mechanismm, and let F be agent-optimal on x. Let T =

{θ ∈ [0, u−1
p (0)) : x(θ) ∈ (0, 1)}. If Up(x, F ) > 0, then T has non-zero F -probability.

Proof of Claim A.13. We show the contrapositive: If T has F -probability 0, then

Up(x, F ) ≤ 0. Consider the mechanism y defined for all θ by

y(θ) =

0, if θ ∈ T

x(θ), else.

(The fact that x is usc implies that y is usc, and hence y is indeed a mechanism.)

Since T has F -probability 0, we have Ua(x, F ) = Ua(y, F ) and Up(x, F ) = Up(y, F ).

We clearly have x ≥ y. It follows that F is agent-optimal on y, and that we may

complete the proof by showing Up(y, F ) ≤ 0.

Let us denote by F∗
B(y) the set of binary distributions in F that are agent-optimal

on y. Lemma A.1 tells us that Up(x, ·) is continuous on F∗(y). Hence Lemma A.2

implies that there exists a probability measure ν supported on F∗
B(y) such that

Up(y, F ) =

∫
F̃∈F∗

B(y)

Up(y, F̃ ) dν(F̃ ).

Now let F̃ ∈ F∗
B(y). Since all θ ∈ [0, u−1

p (0)) satisfy y(θ) ∈ {0, 1}, we infer from

Claim A.12 that Up(y, F̃ ) ≤ 0 holds. Hence Up(y, F ) ≤ 0, as promised.

Lastly, we consider the evidence-disclosure game (part (1) of the proposition).

Claim A.14. In all equilibria of the evidence-disclosure game, the principal’s utility

is 0.

Proof of Claim A.14. Let (F, σA, σP ) be an equilibrium. For all θ, let

x(θ) = σA(θ)σP (θ) + (1− σA(θ))σP ([0, 1])
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denote the induced acceptance probability at type θ. The principal’s utility can-

not be strictly negative as the principal can always reject for a sure payoff of 0.

Towards a contradiction, let the principal’s utility be strictly positive; that is, let

EF [x(θ)up(θ)] > 0. This requires F to be non-degenerate (since up(µ) ≤ 0).

Let S = {θ ∈ [0, u−1
p (0)) ∩ suppF : 0 < x(θ)}. As an intermediate step, we claim

that S has non-zero F -probability. Towards a contradiction, suppose not. Then F -

almost all θ in [0, u−1
p (0)) satisfy x(θ) = 0. In an intermediate step, we claim that all

of the following hold:

0 ≤EF [x(θ)ua(θ)− k(θ)]

≤EF [ua(θ)1(u−1
p (0)≤θ) − k(θ)] = EF [−up(θ)1(u−1

p (0)≤θ)].

The agent’s equilibrium utility EF [x(θ)ua(θ)− k(θ)] is at least 0 since the agent can

always acquire the degenerate distribution (which has a cost of 0 in this environe-

ment); the second inequality follows from ua > 0 and the assumption that F -almost

all θ in [0, u−1
p (0)) satisfy x(θ) = 0; the third is from inspection of ua and k. We

conclude from the previous display that EF [up(θ)1(u−1
p (0)≤θ)] ≤ 0 holds. Using again

that S has F -probability 0, we have EF [x(θ)up(θ)] = EF [up(θ)1(u−1
p (0)≤θ)] ≤ 0. Thus

the principal’s utility is at most 0; contradiction.

Now consider a type θ in S. If this type discloses with non-zero probability in

equilibrium, then, since θ is in the support of F , the principal’s beliefs are degenerate

on θ. Since the type is less strictly than u−1
p (0), disclosing the type leads to the

principal rejecting. But by definition of S we have x(θ) > 0. Hence type θ must

strictly prefer not to disclose. Thus all types in S do not disclose.

Now let α = σP ([0, 1]) denote the probability that the principal accepts if the

agent does not disclose. Since no type in S discloses, we have α = x(θ) > 0 for

all θ ∈ S. Note that since all types can choose not to disclose we must have S =

suppF ∩ [0, u−1
p (0)).

At this point we know α > 0. We next argue that α = 1 and α ∈ (0, 1) both

imply a contradiction, completing the proof.

First, let α = 1. Since all types can choose not to disclose, it follows that x(θ) = 1

holds for all F -almost all types. Hence the principal’s equilibrium utility satisfies

EF [x(θ)up(θ)] = EF [up(θ)] ≤ EF̄ [up(θ)] =
1
2
(h(1)− 1)− 1

2
1
3
= 0; this contradicts the

assumption that the principal’s utility is strictly positive.
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Second, let α ∈ (0, 1). Let G = β(·|[0, 1]) denote the principal’s belief about the

type conditional on the agent not disclosing. Let µG denote the mean of G. For α ∈
(0, 1) to be optimal for the principal, we must have EG[up(θ)] = 0. Note that F would

be the principal’s belief after non-disclosure if F -almost all types did not disclose.

We already know that all types in S = suppF ∩ [0, u−1
p (0)) do not disclose. Hence

µG ≤ µF , with equality if and only if F -almost all types do not disclose. Let Ḡ denote

the binary distribution that assigns probability µG to 1, and probability 1 − µG to

0. We now distinguish two cases. First, let µG = µF . Then, since F -almost all types

do not disclose, the principal’s equilibrium utility is αEF [up(θ)] ≤ 0; contradiction.

Second, let µG < µF . Then we have EG[up(µ)] ≤ EḠ[up(µ)] < EF̄ [up(θ)] ≤ 0 since up

is convex and since up(0) < up(1). But EG[up(µ)] < 0 contradicts the fact that it is

optimal for the principal to accept with probability α ∈ (0, 1) when the agent does

not disclose.

Claims A.11, A.13 and A.14 together complete the proof.

Appendix B Supplementary material

B.1 Costly verification

This part of the appendix discusses optimal mechanisms for the model with costly

verifcation from Section 6.2.

Recall that c : [0, 1] → R+ denotes the principal’s cost of verifying the agent.

Throughout this appendix, we maintain the following assumption in place of As-

sumption 1.

Assumption 4. The functions up− c and up are convex, continuous, and satisfy the

following: There is a point s0 in [µ, 1) such that up − c is strictly negative on [0, s0),

and strictly positive on (s0, 1].

B.1.1 Model

AmechanismM is now a tuple (M,a, p, q) consisting of a metric spaceM of messages,

and functions a : M → [0, 1], p : M → [0, 1] and q : M × [0, 1] → [0, 1]. If the agent

sends message m at type θ, then a(m) is the probability that the principal audits

the agent, p(m) is the acceptance probability conditional on not having audited,
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and q(m, θ) is the acceptance probability conditional on having audited. Let the

acceptance probability xM : M × [0, 1] → [0, 1] be defined for all m and θ by

xM(m, θ) = a(m)q(m, θ) + (1− a(m))p(m).

A strategy (for reporting to the mechanism) is a Borel-measurable function σ : [0, 1] →
M . A strategy is a best-response (for reporting to the mechanism) if

∀θ∈[0,1], σ(θ) ∈ argmax
m∈M

xM(m, θ).

We denote the set of best-responses by Σ∗(M). For technical reasons, we restrict

the set of allowed mechanisms by requiring that M is compact, that xM is usc on

M × [0, 1], that a is Borel-measurable, and that there exists a best-response.26

The timing is now:

(1) The principal commits to a mechanism M.

(2) The agent, knowing the mechanism, picks a type distribution F from F .

(3) Nature draws the agent’s type according to θ.

(4) The agent, knowing θ, reports to the mechanism.

(5) The mechanism possibly audits the agent, and then accepts or rejects the pro-

posal.

All ties are broken in favour of the principal.

Given a mechanism M, a type distribution F in F , and a strategy σ, the expected

utilities of the agent and the principal, respectively, are

Ua(M, F, σ) = EF [xM(σ(θ), θ)ua(θ)]−K(F ) (B.1a)

Up(M, F, σ) = EF [xM(σ(θ), θ)up(θ)− a(σ(θ))c(θ)] . (B.1b)

A type distribution F is agent-optimal on M if for some (arbitrary) best response

σ we have F ∈ argmaxF̃∈F Ua(M, F̃, σ). The set of agent-optimal distributions is

26That is, the argmax-correspondence should admit a Borel-measurable selection. One sufficient
condition for this is that, in addition to the other restrictions, xM be continuous in m (see Border
and Aliprantis (2006, Theorem 18.19, p. 605)). In particular, a sufficient condition is that the
mechanism have finitely many messages.
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denoted F∗(M). The principal’s utility Ūp(M) from a mechanism M is

Ūp(M) = sup
F∈F∗(M),σ∈Σ∗(M)

Up(M, F, σ).

We understand the non-triviality Assumption 3 to now refer to the newly-defined

utility Ūp of the principal.

Lemma B.1. Let Assumptions 2 and 4 hold. For all mechanisms, there exists an

agent-optimal distribution.

Proof of Lemma B.1. All best-responses σ of the agent must induce the same acceptance-

probability θ 7→ xM(σ(θ), θ). Since M is compact and xM is usc, Lemma 17.30 of

Border and Aliprantis (2006, p. 569) the induced acceptance-probability usc in the

type. Hence the agent’s utility is usc in the type distribution. The claim follows from

compactness of F and the Extreme Value theorem.

B.1.2 Preliminaries

The first step in the analysis is to argue that there are again no limitations as to what

the principal can implement, provided the principal is willing to incur sufficiently high

costs. This follows earlier observations in the literature, see e.g. Ben-Porath et al.

(2014). Formally, let us say a mechanism is direct if its message space is [0, 1]. A

direct mechanism M is incentive-compatible (IC) if the agent cannot increase the

acceptance-probability by misreporting; that is, for all θ and θ′ in [0, 1] we have

xM(θ, θ) ≥ xM(θ′, θ).

Lemma B.2. For all mechanisms M, there exists a direct IC mechanism M̃ =

([0, 1], ã, p̃, q̃) satisfying all of the following:

(1) We have Ūp(M̃) ≥ Ūp(M).

(2) The function θ 7→ xM̃(θ, θ) is usc.

(3) All θ ∈ [0, 1] satisfy ã(θ) = xM̃(θ, θ)− infθ′∈[0,1] xM̃(θ′, θ′).

Conversely, for all usc functions x : [0, 1] → [0, 1], there is a direct IC mechanism

M̃ which induces x under truth-telling, and where ã and all θ ∈ [0, 1] satisfy ã(θ) =

x(θ)− infθ′∈[0,1] x(θ
′).

The proof follows below.
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The relationship between ã and the acceptance probability xM̃ is suggested by

the following heuristic: To incentivize truth-telling in the direct mechanism, the

principal should maximally punish the agent when an audit finds the agent to have

lied. Similarly, if auditing reveals that the agents has told the truth, then the principal

should maximally reward the agent. This heuristic pins down ã via the equation

inf
θ′∈[0,1]

xM̃(θ′, θ′) = xM̃(θ, θ)− ã(θ).

The right side is what the agent gets when falsely reporting a type θ. The audit

probability is just high enough to make the worst-off types of the agent, who get the

infimum on the left side, indifferent.

It is worth pointing out that the infimum in infθ′∈[0,1] xM̃(θ′, θ′) is indeed taken

over all θ in [0, 1]. The agent may ultimately acquire a signal whose support is a

strict subset of [0, 1]. Hence the principal chooses the auditing rule so as to prevent

all types θ from misreporting, including the types the principal does not expect to

arise. The reason is simply that the auditing rule at these types nevertheless affects

the agent’s incentives to acquire information.

In view of Lemma B.2, we can take a mechanism to simply mean a usc function

x : [0, 1] → [0, 1]. Denoting
¯
x = infθ∈[0,1] x(θ), the auditing rule is understood to be

a = x−
¯
x. The agent’s and principal’s expected utilities from x and F are given by

Ua(x, F ) = EF [x(θ)ua(θ)]−K(F )

Up(x, F ) = EF [x(θ)up(θ)− (x(θ)−
¯
x)c(θ)] .

The agent’s utility is the same is in the model with evidence. The only change in the

principal’s utility are the additional costs.

We can now state an analogue of Lemma 4.1; the proof is analogous and omitted.

Lemma B.3. Let Assumptions 2 and 4 hold. For all mechanisms x, there exists a

binary distribution F ∈ F∗(x) such that Up(x, F ) = Ūp(x).
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B.1.3 Optimality of two-sided cutoff mechanisms

Let x be a mechanism. Let F ∗ be a binary signal, and let its support be {θ∗0, θ∗1}. Our

candidate two-sided cutoff mechanism x∗ for improving on x is defined as follows.

∀θ∈[0,1], x∗(θ) =


x(θ∗0), if θ ≤ θ∗0

¯
x, if θ∗0 < θ < θ∗1

x(θ∗1), if θ∗1 ≤ θ.

(B.2)

Lemma B.4. Let Assumptions 2 and 4 hold. Let x be a mechanism. Let F ∗ ∈ F∗
B(x)

satisfy Up(x, F ) = Ūp(x). Let x
∗ be the two-sided cutoff mechanism defined in (B.2).

If Up(x, F
∗) > 0, then Ūp(x

∗) ≥ Ūp(x).

Note there is difference to Lemma 4.2. The improving two-sided cutoff mechanism

has an acceptance probability of
¯
x on the middle subinterval; in Lemma 4.2, this

probability is 0. Having the probability at
¯
x ensures that x and x∗ have the same

infimum, which aids the comparison of the principal’s utility under F ∗. Apart from

this detail, the proof from the evidence-model requires only minor modifications, and

is therefore omitted.

Theorem B.5. Let Assumptions 2 to 4 hold. There exists probabilities α∗ and β∗,

and θ∗0 and θ∗1 in [0, 1] such that θ∗0 < µ ≤ s0 < θ∗1, and such that the two-sided

mechanism x∗ with parameters (θ∗0, θ
∗
1, α

∗, β∗, 1) maximizes Ūp over the set of mech-

anisms. Moreover, the binary distribution F ∗ with support {θ∗0, θ∗1} and mean µ is

agent-optimal on x∗ and satisfies Ūp(x
∗) = Up(x

∗, F ∗).

The proof is analogous to the proof of Theorem 4.3 and is omitted. Note that we

are not claiming that β∗, the acceptance-probability on the middle interval, is opti-

mally set to 0. Intuitively, a high value of β∗ lets the principal save on auditing costs.

Conversely, if β∗ is too high, then the agent will acquire the degenerate distribution

on µ.

With a bit of work, one can show that if all F ∈ F satisfy EF [up(θ)] ≤ 0, then one

can optimally set β∗ to 0. To see this intuitively, recall that the principal’s utility from

a mechanism x and a distribution F is EF [x(θ)up(θ) + (x(θ)−
¯
x)c(θ)]. Decreasing

x everywhere by a constant does not affect the expectation EF [(x(θ)−
¯
x)c(θ)], but

increases EF [x(θ)up(θ)]. This suggests that if x is a two-sided cutoff mechanism, then
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we can improve on x by passing to x−
¯
x; the acceptance-probability of x−

¯
x on the

middle interval is 0. The only complication in this argument is that changing x also

distorts the agent’s incentives when picking the type distribution. For the following

result, we thus verify that such a distortion cannot make the principal worse off.

Lemma B.6. Let all F ∈ F satisfy EF [up(θ)] ≤ 0 Let x be a two-sided cutoff

mechanism with cutoffs {θ0, θ1}. Let F with support {θ0, θ1} be agent-optimal on x

and such that Ūp(x) = Up(x, F ) > 0 holds. Then Ūp(x−
¯
x) ≥ Ūp(x).

The proof follows below.

Using Lemma B.6, one may verify that if all F ∈ F satisfy EF [up(θ)] ≤ 0, then

there is an optimal two-sided cutoff mechanism where the acceptance-probability on

the middle (right-most) interval is 0 (is 1).

B.1.4 Proof of Lemma B.2

Proof of Lemma B.2. Consider the first part of the claim.

We begin by deriving a lower bound on the costs that the principal has to incur

when the agent best responds. Let σ be an arbitrary best-response on M. Let θ

and θ′ in [0, 1] be arbitrary. We have the following (the first inequality follows from

the optimality of σ(θ′) at θ′; the equality follows by spelling out xM(σ(θ), θ); the last

inequality is immediate):

xM(σ(θ′), θ′) ≥ xM(σ(θ′), θ′)

= xM(σ(θ), θ) + a(σ(θ))q(σ(θ), θ′)− a(σ(θ))q(σ(θ), θ)

≥ xM(σ(θ), θ)− a(σ(θ)).

The previous display implies a(σ(θ)) ≥ xM(σ(θ), θ) − xM(σ(θ′), θ′) for arbitrary θ

and θ′ in [0, 1]. Let
¯
xM = inf

θ′∈[0,1]
xM(σ(θ′), θ′) We conclude that for all θ in [0, 1],

a(σ(θ)) ≥ xM(σ(θ), θ)−
¯
xM.

Note that if σ′ is another best-response on M, then xM(σ(θ), θ) = xM(σ′(θ), θ) holds

for all θ. Therefore, repeating the previous calculation, we find that for all θ and all

44



best-responses σ′,

a(σ′(θ)) ≥ xM(σ(θ), θ)−
¯
xM. (B.3)

We are ready to define our candidate direct IC mechanism. Note that θ 7→ xM(σ(θ), θ)

is usc (see, e.g., Lemma 17.30 of Border and Aliprantis (2006, p. 569)), and hence

Borel-measurable. Consider the direct mechanism M̃ = ([0, 1], ã, q̃, p̃) defined by the

following rules:

q̃(θ′, θ) =

1, if θ = θ′,

0, else

p̃(θ) =

 ¯
xM

1−xM(σ(θ),θ)+
¯
xM

, if 1− xM(σ(θ), θ) +
¯
xM > 0,

0, else

ã(θ) = xM(σ(θ), θ)−
¯
xM.

All three of these functions map to [0, 1] and are Borel-measurable.

Let us first show that xM̃(θ, θ) = xM(σ(θ), θ) holds for all θ. Indeed, we note that

1− xM(σ(θ), θ) +
¯
xM ≤ 0 holds if and only if x(σ(θ), θ) = 1 and

¯
xM = 0. Therefore,

for all θ,

xM̃(θ, θ) = ã(θ) + (1− ã(θ))p̃(θ)

= xM(σ(θ), θ)−
¯
xM + (1− xM(σ(θ), θ) +

¯
xM)p̃(θ)

= xM(σ(θ), θ).

Thus θ 7→ xM̃(θ, θ) is usc. Moreover, for all θ we have ã(θ) = xM̃(θ, θ)−infθ′∈[0,1] xM̃(θ′, θ′).

We next show that M̃ is IC. To that end, let θ′ be different from θ. We have

xM̃(θ′, θ) = (1− ã(θ′))p̃(θ′) = xM(σ(θ′), θ′)− ã(θ′).

The choice of ã(θ′) as
¯
xM clearly implies xM(σ(θ), θ) ≥ xM(σ(θ′), θ′) − ã(θ′), and

hence xM̃(θ, θ) ≥ xM̃(θ′, θ). Thus M̃ is IC.

It remains to show that Ūp(M̃) ≥ Ūp(M) holds. We have shown that xM̃(θ, θ) =

xM(σ(θ), θ) holds for all best-responses σ on M. Hence the two mechanisms admit

the same set of agent-optimal distributions. Lastly, when the agent best responds
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the induced auditing cost are weakly lower under M̃ than under M, as we infer from

(B.3) and the definition of ã. Hence Ūp(M̃) ≥ Ūp(M).

Lastly, consider the second part of the claim. The construction of a direct IC

mechanism with the desired properties is completely analogous to the construction

of M̃ above, if one only replaces the above instance of xM and inf xM, respectively,

with x and inf x, respectively. We omit the details.

B.1.5 Proof of Lemma B.6

Proof of Lemma B.6. Let the parameters of x be denoted (θ0, θ1, α, β, γ). There is

nothing to show if β = 0; thus let β > 0.

As discussed in the paragraph preceding Lemma B.6, we have Up(x, F ) ≤ Up(x−
β, F ). It follows that there is nothing to prove if F is agent-optimal on x− β. Thus

assume F fails to be agent-optimal on x− β.

We invoke Lemma B.3 to find an agent-optimal binary distribution F̃ on x−β such

that Up(x−β, F̃ ) = Ūp(x−β). To prove the claim, it suffices to show Up(x−β, F ) ≤
Up(x − β, F̃ ). We will show that F̃ must be an MPS of F . Arguments analogous

to those that established Lemma A.4 then imply that Up(x − β, F ) ≤ Up(x − β, F̃ )

holds.

To show that F̃ is an MPS of F , we proceed in two steps.

First, we claim that if F̂ is agent-optimal on x− β, then it is not an MPC of F .

Since F is agent-optimal on x but not on x− β, we have Ua(x− β, F̂ ) + Ua(x, F ) >

Ua(x−β, F )+Ua(x, F̂ ). Spelling out this inequality yields β (EF [ua(θ)]− EF̂ [ua(θ)]) >

0. Since ua is concave and β > 0, we conclude that F̂ cannot be an MPC of F .

Next, recall that F̃ is binary, and that the support of F is {θ0, θ1}. If both

realizations of F̃ are outside the interval (θ0, θ1), then F̃ is an MPS of F and we

are done. We complete the proof by arguing that a contradiction to the previous

paragraph obtains if F̃ has a realization in (θ0, θ1). Suppose F̃ has such a realization

t. Denote the other realization of F̃ by t′. Note that Lemma A.5 from the model

with evidence applies to the model with verification since the lemma is a statement

about agent-optimal distributions (which do not depend on the principal’s verification

costs). If t′ = t, then F̃ is degenerate, and hence an MPC of F ; contradiction.

If t′ > θ1, then Lemma A.5 implies that F̃ is supported on a subset of [θ0, θ1].

In particular, F̃ is an MPC of F ; contradiction. If t′ ∈ (θ0, θ1) or α = β, then

the degenerate distribution on µ is another agent-optimal distribution. Since this
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distribution is an MPC of F , we have a contradiction. Lastly, if t′ ≤ θ0 and α > β,

then Lemma A.5 implies that F̃ is supported on a subset of [θ0, θ1]. In particular, F̃

is an MPC of F ; contradiction.

B.2 Multiple Alternatives

In this part of the appendix, we consider optimal mechanisms in an extension with

multiple alternatives. We maintain the assumption that the agent chooses between

all distributions on [0, 1] with some fixed mean, but allow for richer preferences than

in the basic model.

B.2.1 Setup

Let us agree to the following notation: When Y is a metric space, then ∆Y means the

set of Borel probability distributions over Y . When y and u are vectors in Euclidean

space, then y · u refers to their inner product.

There is a finite set X of alternatives. The agent’s and principal’s payoffs, respec-

tively, are given by continuous functions ua : X × [0, 1] → R and up : X × [0, 1] → R,
respectively. We further maintain the following:

Assumption 5. For all x ∈ D, the functions θ 7→ up(x, θ) is convex and θ 7→
ua(x, θ) is concave. There exists x0 ∈ X such that, for all x ∈ X, the difference

θ 7→ ua(x, θ)− ua(x0, θ) is weakly positive and concave.

Let µ ∈ (0, 1). As in the basic model, the agent chooses a distribution F from the

set F of distributions on [0, 1] with mean µ. Here we assume that all distributions

are costless. This assumption is without loss in the following sense: If the costs are

given as the integral of some convex function k, then we can simply redefine ua(x, θ)

as ua(x, θ)− k(θ).

As in the main text, we assume that, no matter the type distribution, the agent can

provide hard evidence that fully reveals the type realization. In view of Assumption 5,

we may therefore assume that the agent always discloses the type (else, the principal

commits to implementing x0).

A mechanism is a function27 x : [0, 1] → ∆X satisfying the following.

27There should be no risk of confusion by using the symbol x for alternatives as well as for
mechanisms.
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(1) The mapping θ 7→ x(θ) · ua(θ) is upper semi-continuous (usc).

(2) There exists a sequence {hn}n∈N of continuous real-valued functions on [0, 1]

that converges pointwise to θ 7→ x(θ) · up(θ).

Restriction (1) is the natural analogue of the restriction from the basic model. Re-

striction (2) is that the principal’s payoffs are sufficiently well-behaved; it holds if,

for example, the mechanism admits finitely-many discontinuities.

The agent’s and principal’s utility from a mechanism x and a distribution F

are Ua(x, F ) =
∫
x · ua dF and Up(x, F ) =

∫
x · up dF , respectively. The set of

x-agent-optimal distributions is F∗(x) = argmaxF∈F Ua(x, F ). The principal’s util-

ity from x (when the agent best responds and breaks ties favourably) is Ūp(x) =

supF∈F∗(x) Up(x, F ).

B.2.2 Two-sided cutoff mechanisms

Let δx0 denote the degenerate distribution on x0.

Definition 4. A mechanism x is a two-sided cutoff mechanism if there exist

p0, p1 ∈ ∆X and θ0, θ1 ∈ [0, 1] such that

∀θ∈[0,1], x(θ) =


p0, if θ ≤ θ0,

δx0 , if θ0 < θ < θ1,

p1, if θ1 ≤ θ.

In this case, we refer to (θ0, θ1, p0, p1) as the parameters of x.

The main result of this part of the appendix is that two-sided cutoff mechanisms

are optimal.

Theorem B.7. Let Assumption 5 hold. Let x be a mechanism. For all ε > 0, there

is a two-sided cutoff mechanism x∗ satisfying Ūp(x
∗) ≥ Ūp(x)− ε.

B.2.3 Proof of Theorem B.7

The proof follows the one from the basic model. Given a mechanism x, let F∗
B(x)

denote the set of binary distributions in F∗(x) (which at this point we are not claiming

to be non-empty). We first establish a sense in which it suffices to consider binary

distributions.
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Lemma B.8. Let x be a mechanism, and let F ∈ F∗(x). There exists a distribution

F ∗ ∈ F∗
B(x) such that Up(x, F ) ≤ Up(x, F

∗).

Proof of Lemma B.8. Recall that θ 7→ x(θ) · ua(θ) is usc (by definition of a mecha-

nism). By using this fact and retracing in the proof of Lemma A.2, one may verify

that there is a Borel-probability measure ν over F∗
B(x) such that all continuous linear

functions Γ: F∗(x) → R satisfy

Γ(F ) =

∫
F̃∈F∗

B

Γ(F̃ ) dν(F̃ ). (B.4)

Now, let {hn}n∈N be a sequence of continuous real-valued functions that converges

pointwise to θ 7→ x(θ) · up(θ).

For all n, continuity of hn implies that the function F̃ 7→
∫
hn dF̃ is continuous

on F∗(x). Hence (B.4) and the Dominated Converge theorem imply∫
θ∈[0,1]

x(θ) · up(θ) dF =

∫
F̃∈F∗

B

∫
θ∈[0,1]

x(θ) · up(θ) dF̃ dν(F̃ ).

Equivalently,

Up(x, F ) =

∫
F̃∈F∗

B

Up(x, F̃ ) dν(F̃ ).

Thus there exists F ∗ ∈ F∗
B(x) such that Up(x, F ) ≤ Up(x, F

∗), as promised.

We next establish a sufficient condition for the principal’s on a two-sided cut-

off mechanism to increase with respect to mean-preserving spreads. Let ūp(µ) =

maxx∈X up(x, µ).

Lemma B.9. Let x be a two-sided cutoff mechanism with parameters (θ0, θ1, p0, p1)

such that µ ∈ (θ0, θ1). Let F denote the binary distribution in F whose support is

{θ0, θ1}. Let F ′ and F ′′ be two binary distributions in F in such that F is an MPC

of F ′, and F ′ is an MPC of F ′′. If Up(x, F ) > ūp(µ), then Up(x, F
′′) ≥ Up(x, F

′).

The proof follows the same ideas as the proof of Lemma A.4.
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Proof of Lemma B.9. Let ω : [0, 1] → R be defined by

∀θ∈[0,1], ω(θ) =



x(θ0) · up(θ), if θ ≤ θ0,

x(θ0) · up(θ0) +
θ−θ0
µ−θ0

(ūp(µ)− x(θ0) · up(θ0)) , if θ0 < θ ≤ µ,

ūp(µ) +
θ−µ
θ1−µ

(x(θ1) · up(θ1)− ūp(µ)) , if µ < θ ≤ θ1,

x(θ1) · up(θ), if θ1 < θ.

The assumption on the MPC-ordering of F , F ′, and F ′′ implies suppF ′ ∪ suppF ′′ ⊆
[0, θ0]∪ [θ1, 1]. Note also that x is constant on [0, θ0]∪ [θ1, 1]. Hence, if θ is a point in

the support of F , F ′, or F ′′, then ω(θ) and x(θ) · up(θ) coincide. The claim therefore

follows if we can show that ω is convex on [0, 1].

We first verify that the restriction of ω to [θ0, θ1] is convex. Towards a contradic-

tion, suppose this restriction is non-convex. Since this restriction is piecewise affine

with at most one change in slope, it is concave. Hence

Up(x, F ) =

∫
x(θ) · up(θ) dF =

∫
ω dF ≤ ω(µ) = ūp(µ),

and we have a contradiction to the assumption Up(x, F ) > ūp(µ).

Now, since x(θ0)·up(µ) ≤ ūp(µ) and since the functions (up(x, ·))x∈X are all convex,

one may verify that the restriction of ω to [0, µ] is convex. A similar argument shows

that the restriction of ω to [µ, 1] is convex. It follows from these facts and the previous

paragraph that ω is convex on [0, 1].

We now complete the proof of Theorem B.7.

Proof of Theorem B.7. Recall the definition ūp(µ) = maxx∈X up(x, µ). If Ūp(x) ≤
ūp(µ), then the claim follows trivially by taking x∗ to be two-sided cutoff mechanism

that is constantly δx0 . (On this mechanism, the degenerate distribution on µ is agent-

optimal, and this distribution generates a utility of ūp(µ) for the principal.) Thus let

Ūp(x) > ūp(µ).

Let ε. In view of Lemma B.8, we may find a binary distribution F ∗ in F∗(x) such

that Up(x, F
∗) is within ε

2
of Ūp(x) and such that Up(x, F

∗) > ūp(µ). Let {θ∗0, θ∗1}
denote the support of F ∗. The inequality Up(x, F

∗) > ūp(µ) implies that F ∗ is non-

degenerate, meaning µ ∈ (θ∗0, θ
∗
1).
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Our candidate for x∗ is the two-sided cutoff mechanism with parameters (θ∗0, θ
∗
1, x(θ

∗
0), x(θ

∗
1)).

Invoking Lemma B.8, let us find a binary distribution F in F∗(x) such that Up(x
∗, F )

is within ε
2
of Ūp(x

∗). We consider two cases.

If the support of F consists of a point below θ∗0 and a point above θ∗1, then F is

a mean-preserving spread of F ∗. Hence Lemma B.9 implies Up(x
∗, F ) = Up(x

∗, F ∗).

Since we also have Up(x
∗, F ∗) = Up(x, F

∗), and hence the choice of F ∗ and F imply

Ūp(x
∗) ≥ Ūp(x)− ε, as desired.

Thus suppose the support of F contains a point in (θ∗0, θ
∗
1). By analogizing the

argument that established Lemma A.5, one may verify that there is another x∗-agent-

optimal distribution F̃ whose support is a subset of [θ∗0, θ
∗
1]. Agent-optimality of F̃

on x∗ and agent-optimality of F ∗ on x imply Ua(x, F
∗) ≥ Ua(x, F̃ ) and Ua(x

∗, F ∗) ≤
Ua(x

∗, F̃ ). The definition of x∗ and the inclusion supp F̃ ⊆ [θ∗0, θ
∗
1] moreover imply

Ua(x, F̃ ) ≥ Ua(x
∗, F̃ ). Hence Ua(x

∗, F ∗) = Ua(x
∗, F̃ ), meaning that F ∗ is another

agent-optimal distribution on x∗. Hence Ūp(x
∗) ≥ Up(x

∗, F ∗) = Up(x, F
∗) ≥ ŪP (x)−

ε
2
. In particular, we have Ūp(x

∗) ≥ Ūp(x)− ε, as desired.
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