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Abstract

We consider the sale of a single indivisible common-value good in a dy-

namic market where short-lived buyers arrive over time. Buyers observe pri-

vate signals about the value. The seller is initially uninformed and proposes

the terms of trade. As time passes, all players learn about the value from delay

in trade. Importantly, this learning process depends on what is made pub-

lic about buyer-seller interactions. We compare the division of surplus across

three transparency regimes that differ with respect to whether buyers observe

the seller’s past actions or time-on-the-market. When the seller’s time-on-the-

market but not the seller’s past actions are observable, and if buyers’ signals are

sufficiently rich, then there is no perfect Bayesian equilibrium where the seller

extracts the full surplus. In the other two regimes, where buyers observe either

everything or nothing about the seller’s past actions and time-on-the-market,

the seller extracts the full surplus in at least one equilibrium, no matter the

signal structure.
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1 Introduction

In many markets, participants learn over time. A buyer who arrives to the market

at a late date may learn payoff-relevant information from the fact that earlier buyers

bargained with the seller but chose not to buy. The precise inference depends on the

information that is made public about past interactions: how many earlier buyers

bargained with the seller, and what terms of trade were they offered? We analyze the

welfare implications of this kind of transparency in a dynamic market for a common-

value good.

Existing work focuses on situations where the seller and no one else is initially

informed about the good’s value, and where the short-lived buyers propose the terms

of trade (for example, Fuchs et al., 2016; Hörner and Vieille, 2009; Kim, 2017). Yet,

it is also plausible that that information is revealed only gradually to all market

participants, and that the seller proposes the terms of trade.

To motivate these modifications, consider that when the seller proposes they can

affect the flow of information to the market, which is an idea that goes back at least

to Taylor (1999). Indeed, a buyer’s rejecting a low price is more informative than

rejecting a high price. The market’s transparency affects what later buyers learn from

these rejections, and, therefore, the seller’s incentives for charging high prices in early

periods. We take a step towards understanding this interaction between learning and

transparency.

In our model, there is a long-lived seller and a sequence of short-lived buyers.

The seller has a single indivisible good for which the buyers have a common value.

The value takes one of two values. The seller solicits buyers one-by-one. While the

seller is uninformed about the value, the buyers observe informative signals from a

discrete signal structure. Conditional on the value, these signals are independent and

identically distributed.

In each period, the seller makes a recommendation that identifies for which signal

realizations a buyer should buy the object. An intermediary then picks a price that

implements the seller’s recommendation. We mainly think of this formulation of the

trading procedure as a convenient modelling choice that permits us to focus on the

flow of information to the market; we give an interpretation once we have presented

the model.

We compare three transparency regimes:
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(1) The seller’s past recommendations and time-on-the-market are both observable.

(2) Past recommendations are unobservable, but time-on-the-market is observable.

(3) Past recommendations and time-on-the-market are both unobservable.

For each regime, we ask whether the seller extracts the full surplus from trade. There

are commonly known gains from trade, meaning that the object is traded with cer-

tainty in all equilibria. We can thus focus on the way the surplus is divided between

the players.

Our main insight is that, in a sense to be made precise momentarily, the seller’s

ability to extract the full surplus is smallest in the intermediate regime (2). The seller

would benefit from passing to either of the two more extreme regimes (1) and (3).

In all regimes, the seller extracts the full surplus if and only if buyers accrue

zero information rents. This, in turn, happens if and only if trade is certain to take

place with a buyer observing the most optimistic signal. When recommendations and

time-on-the-market are both observable, we establish as a benchmark that the seller

indeed extracts the full surplus in the unique perfect Bayesian equilibrium. It is as

if the seller had commitment power.

Our first main result concerns the game with unobservable past recommendations

but observable time-on-the-market. We show that, if the private signals of buyers

are sufficiently rich, then the seller’s utility is bounded away from the full surplus

across all perfect Bayesian equilibria. By sufficiently rich we mean that for each

value realization the conditional signal distribution approximates a continuous strictly

positive density.

The argument is as follows: If the seller deviates (from a candidate equilibrium

strategy) when meeting the first buyer, all later buyers fail to account for this devia-

tion in their beliefs. For certain deviations, later buyers’ beliefs will be too optimistic

about the value relative to the correct Bayesian posterior—they are fooled into over-

paying. The downside for the seller from the deviation is that if the first buyer trades,

then this buyer accrues information rents. We show that this downside is dominated

in rich signal structures. Using such a deviation, we argue that the unique strategy

profile that would let the seller appropriate the full surplus cannot be sustained in

equilibrium. (However, an equilibrium exists.)

For our second main result, we turn to the third regime where neither past recom-

mendations nor time-on-the-market are observable. A deviation (from a candidate

equilibrium strategy) can now signal that the seller has failed to trade with many
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buyers. Failing to trade is an indicator of poor value. Thus a deviation entails trad-

ing at terms that are quite unfavorable for the seller. Building on this intuition, we

show that the seller extracts the full surplus in a sequential equilibrium. The same

idea can be used construct sequential equilibria where buyers are left some surplus.

In these equilibria (that may or may not leave surplus to buyers), the seller makes a

constant recommendation for many early periods. The price is constant across these

periods, and the good will trade with overwhelming probability at this constant price.

We derive these results in a modified game where the number of buyers is finite but

large, and where the seller incurs small costs for soliciting new buyers. Therefore,

these sequential equilibria are sustained even in the presence of (small) incentives for

trading quickly.

Since our result on the failure of full surplus extraction in the second regime

assumes that signals are rich, a natural follow-up is to ask whether the seller would

benefit from coarser signal structures. This is indeed the case, in the following sense:

if buyers’ signals about the value are binary, then buyer surplus is zero in all sequential

equilibria of all three regimes.

The paper is organized as follows. In Section 2 we study the model with un-

observable recommendations and observable time-on-the-market. The regime where

everything is observable is presented as a benchmark in this section. In Section 3,

we consider the game where neither the seller’s recommendations nor time-on-the-

market are observable. Section 4 discusses the literature, and Section 5 concludes.

All proofs are in the appendices.

2 Observable time-on-the-market

2.1 Model

We consider a game between a seller, and countably infinitely-many buyers and in-

termediaries. The seller is long-lived. All other players are short-lived and arrive to

the market in a pre-determined order.

Environment The seller (she) owns a single indivisible good which she values at

0. Buyers have a common value for the good that depends on an unobservable state.

The state has two possible realizations, ℓ and h, with associated values vℓ and vh. We

3



assume 0 < vℓ < vh, and so it is common knowledge that there are gains from trade.

Let αω,0 ∈ (0, 1) be the common prior that the state is ω ∈ {ℓ, h}. It will frequently
be more convenient to represent beliefs via the likelihood ratio of state h vs. ℓ. We

denote the prior likelihood ratio by π0 = αh,0/αℓ,0.
1

At the start of the game, the seller is uninformed about the state. Each buyer

(he) is endowed with a private signal from a finite set S. Conditional on state ω, the

signals of (each finite subset of) the buyers are independent draws from a distribution

fω that has support S.

Since the state is binary, it is without loss to order signals according to their

likelihood ratios; that is, we assume

∀s,s′∈S s < s′ ⇒ fh(s)

fℓ(s)
<

fh(s
′)

fℓ(s′)
. (MLRP)

Given s ∈ S and π ∈ (0,∞), let

v̂(s, π) = vℓ + (vh − vℓ)
π fh(s)

fℓ(s)

π fh(s)
fℓ(s)

+ 1
. (2.1)

The value is v̂(s, π) is the posterior value for a buyer who observes a signal realization

s starting at a belief π. The prior value of the good, termed the full surplus, is denoted

v̂0 and given by

v̂0 = vℓ + (vh − vℓ)
π0

π0 + 1
. (2.2)

Trading protocol The game unfolds in discrete time, indexed by N = {1, 2, . . .}.
In period i, the seller, buyer i, and intermediary i are active. First, the seller picks

an element σi of S. We think of this as the seller recommending that buyers with

a signal above σi buy the object. Accordingly, we refer to this as the recommended

cutoff. The recommendation is observed by intermediary i, who then posts a price

pi. Next, buyer i arrives to the market with probability λ ∈ (0, 1). If he arrives, he

learns σi, pi, and the realization of his private signal. He then decides whether to

buy at pi. If he does, the object is traded and the game ends. If buyer i does not

arrive to the market or does not trade, the game moves to the next period.

1So, a belief of 0 means that the state is sure to be ℓ. A belief of ∞ means the state is sure to
be h. All relevant Bayesian posteriors in our model will lead to beliefs in (0,∞).
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Note that the seller’s time-on-the-market is observable in the sense that each

buyer i is in the market in period i or not at all.

The seller’s payoff is the price at which the object is traded, if at all. Buyer i’s

payoff in state ω is vω − pi if he trades; else his payoff is 0. As for the intermediaries

we assume the following: If the seller recommends σi and buyer i arrives with a

signal si such that σi ≤ si but buyer i ends up not buying the good, then the payoff

of intermediary i is −∞. In all other cases, the intermediary’s payoff is pi. (We

interpret the intermediaries further below.) The solution concept is perfect Bayesian

equilibrium.

Equilibrium prices Buyer i’s beliefs about the state depend on his private signal

si, the seller’s recommendation σi, and the fact that he finds the good to not have

been sold in previous periods;2 we comment in more detail below what exactly one

can infer from the recommendation. Let πi(σi) denote i’s belief (expressed as the

likelihood ratio of h vs. ℓ) after learning that the game has reached round i and

learning the seller’s action σi, but before learning his private signal si. We will refer

to π simply as buyers’ beliefs. This is a slight abuse of language as π does not include

a buyer’s inference from his private signal, but no confusion should arise.

Once buyer i learns si, his valuation for the good updates to v̂(si, πi(σi)). Thus

he is willing to accept a price pi if and only if

v̂(si, πi(σi)) ≥ pi.

The MLRP implies that v̂(si, πi(σi)) is increasing in si. In equilibrium, the interme-

diary, acting according to his preferences, sets the price as large as possible subject to

the constraint that buyer i accepts if si is weakly above σi, Hence the intermediary

sets pi = v̂(σi, πi(σi)) whenever the principal recommends σi. Buyer i will accept

after a recommendation of σi if and only if i’s private signal is weakly above σi.

These observations let us simplify the description of equilibrium: It suffices to

specify the recommendations of the seller, and buyers’ beliefs π.

Formally, the set of pure strategies of the seller is the set S∞ of sequences in S.

2The belief could in principle also depend on the intermediary’s price. Note however, that the
buyer knows as much as the intermediary about the history, and hence we can safely omit this
dependence.
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The set of mixed strategies of the seller is the set ∆(S∞) of distributions over S∞.3

Generic elements of S∞ and ∆(S∞), respectively, are denoted σ and µ, respectively.

Buyers’ beliefs are given by a function π : N × S → [0,∞]. Given (µ, π), we denote

the seller’s utility by V (µ, π). (See the appendix for general formulas for the seller’s

expected utility and buyers’ posteriors.)

Definition 1. A pair (µ, π) is an equilibrium if µ maximizes V (·, π) across ∆(S∞),

and π satisfies all of the following:

� For all s ∈ S, we have π1(s) = π0.

� For all i ≥ 2 and all s ∈ S, if s is played by µ with non-zero probability in

period i (meaning µ({σ ∈ S∞ : σi = s}) > 0), then πi(s) is derived from µ via

Bayes’ rule.

The first condition on the beliefs requires that the seller cannot signal what she

does not: buyer 1, who is the first to interact with the seller, draws no inference from

the seller’s recommded cutoff in period 1 as the seller is initially uninformed about

the state. The second condition states that all other beliefs are derived from Bayes’

rule where possible: all periods i are reached with non-zero probability (since with

non-zero probability buyer i is the first to arrive to the market), and hence πi(s)

can be derived from Bayes’ rule if and only if µ plays s with non-zero probability in

period i.

What can buyers in periods 2 and onwards infer from past play and the seller’s

cutoff? Along the equilibrium path, trade happens if and only if the active buyer’s

signal is weakly greater than the cutoff. When buyer i arrives to the market and

finds that the good has not been sold, he therefore infers that all earlier buyers who

arrived to the market drew signals strictly below the cutoffs recommended in the

past. The inference from this event depends on the values of these cutoffs. If the

seller’s strategy is mixed, learning her current cutoff lets buyer i draw inference about

past cutoffs, and hence about past buyers’ signals, and hence about the value of the

good.

Sequential equilibria Some of our results concern sequential equilibria.4

3The finite set S has the discrete metric, and S∞ has the product metric. A distribution over
S∞ means a Borel probability-measure on S∞.

4The definition is at a slight abuse of language as we do not consider perturbations of the buyers’
or intermediaries’ strategies.
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Definition 2. A strategy of the seller is fully mixed if in all periods it recommends

all cutoffs with non-zero probability.

An equilibrium (µ, π) is a sequential equilibrium if there is a sequence {µk}k∈N
of fully mixed strategies and a sequence {πk}k∈N of beliefs satisfying both of the

following:

(1) The sequence {µk}k∈N weak-∗ converges to µ, and the sequence {πk}k∈N con-

verges to π pointwise.

(2) For all k, the beliefs πk are derived from µk via Bayes’ rule.

Lemma 2.1. There exists a sequential equilibrium.

Interpreting the intermediaries We think of the seller as recommending the

cutoff above which a buyer should buy the good. In order to actually implement

this cutoff via a price, the seller relies on intermediaries. This could be because

intermediaries have greater expertise than the seller for interacting with buyers. For

concreteness, suppose the seller writes a contract that rewards the intermediary with

a share ρ of the price, provided the price is low enough to implement the seller’s

recommendation. If there are multiple intermediaries in each period, they compete

the share ρ down to 0.

That said, we mostly view the intermediaries as a convenient modelling tool.

The advantage of our formulation is that we can focus on the cutoff at which trade

happens. In each period, the cutoff determines the information rents that the present

buyer accrues in the event of trade, and it determines what the market learns about

the value in the event of no-trade. Hence the cutoffs are key to determining the

division of surplus.

2.2 The full surplus is an upper bound

We begin our analysis by showing that the full surplus is an upper bound on the

seller’s equilibrium expected utility. For expositional purposes, let us assume λ = 1,

meaning that buyers are sure to arrive to the market (but the results are stated for

arbitrary λ ∈ (0, 1)). For λ = 1, the game reaches period i if and only if all preceding

buyers had signals strictly below the seller’s cutoff. Let s̃i denote buyer i’s random

signal, and let σ̃i denote the (possibly random) cutoff of the seller in period i. We
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therefore identify the event

{s̃1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i ≥ σ̃i}

with the event that buyer i ends up buying the object.

Consider an equilibrium (µ, π). The seller’s strategy µ together with the distri-

bution of states and signals induces some joint distribution of recommended cutoffs,

states, and signals. We denote the probability- and expectation-operators with re-

spect to this distribution by P and E.
Recall that if buyer i buys at a cutoff σi, he will pay v̂i(σi, πi(σi)). This is his pos-

terior valuation conditional on the game reaching period i, the seller recommending

σi, and his signal being equal to σi; let us denote this valuation by

E [v|s̃1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i = σi]

The seller’s equilibrium expected utility is therefore

∞∑
i=1

(
P (s̃1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i ≥ σ̃i)

× E [v|s̃1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i = σ̃i]

)
.

(2.3)

The MLRP implies that this is no greater than

∞∑
i=1

(
P (s̃1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i ≥ σ̃i)

× E [v|s̃1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i ≥ σ̃i]

)
.

(2.4)

By iterated expectations, the sum in (2.4) is nothing but the prior value of the good,

namely the full surplus v̂0. In fact, the MLRP implies that (2.3) is strictly less than

(2.4) if, with non-zero µ-probability, a period is reached where the cutoff is strictly

below the largest signal in S. That is, the seller leaves information rents unless she

is certain to trade with the highest possible signal.

To state this formally, let us denote by s̄ the largest signal in S. Let σ̄ be the
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sequence of cutoffs that is constantly equal to s̄.

Lemma 2.2. In all equilibria, the seller’s utility is at most v̂0. If in an equilibirum

the seller’s utility is v̂0, then in this equilibrium the seller’s strategy is σ̄.

Note that even if the seller’s recommendation is constantly equal to s̄, the price

is strictly decreasing over time. Indeed, in this case the price in period i is given by

E [v|s̃1 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄] .

As i increases, this expectation conditions on a larger number of signals being below

s̄, which depresses beliefs.5 Put differently, as the good is not being sold, the inter-

mediaries are decreasing prices at just the right rate to keep buyer with signals equal

to s̄ indifferent between buying.

Lemma 2.2 does not say that the strategy σ̄ is actually sustained in equilibrium.

Before investigating whether this can happen, let us make good on discussing the

promised benchmark where past recommendation are observable.

2.3 Full surplus extraction with observable recommendations

Suppose for a moment that the seller’s recommended cutoffs were observable. We

claim that in this case she can extract the full surplus in equilibrium by playing the

pure strategy σ̄. In fact, this is the only equilibrium. To see this, suppose the seller

uses some pure strategy σ.6 Since the seller’s actions are observable, buyer i makes

the correct inference from play; that is, his belief agrees with the Bayesian posterior

induced by σ. The price which buyer i is offered must therefore correctly account for

the Bayesian inference from reaching period i. Since this is true for all periods i, the

5Precisely, the conditional expectation reads

vℓ + (vh − vℓ)
π0

fh(s̄)
fℓ(s̄)

(
1−λfh(s̄)
1−λfℓ(s̄)

)i−1

π0
fh(s̄)
fℓ(s̄)

(
1−λfh(s̄)
1−λfℓ(s̄)

)i−1

+ 1

.

which, by the MLRP, is strictly decreasing in i.
6Since her actions are observable, pure strategies are without loss.
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seller’s utility from σ is (assuming λ = 1)

∞∑
i=1

(
P (s̃1 < σ1, . . . , s̃i−1 < σi−1, s̃i ≥ σi)

× E [v|s̃1 < σ1, . . . , s̃i−1 < σi−1, s̃i = σi]

)

The arguments from the previous section imply that, if σ ̸= σ̄, then this utility is

strictly less than v̂0, and hence strictly less than the utility from σ̄.

The argument from the previous paragraph does not apply in the game with un-

observable recommendations since, following a deviation in some period, later buyers

do not revise their beliefs. Exploiting these incorrect beliefs, we show the seller may

profitably deviate from σ̄ by exploiting these incorrect beliefs to obtain a utility

strictly above the prior value v̂0.

2.4 No full surplus with rich signals

In this section, we show that if signals are sufficiently rich, then the seller cannot

extract the full surplus in equilibrium. We first make precise what we mean by a rich

signal structure. Fixing a pair of cdfs (Gh, Gℓ) on [0, 1] and an integer k, consider Sk,

fℓ,k and fh,k defined as follows:

Sk =

{
0,

1

k
, . . . , 1− 1

k

}
∀s∈Sk

, fω,k(s) = Gω

(
s+

1

k

)
−Gω(s).

We say the sequence {(Sk, fh,k, fℓ,k)}k∈N converges to (Gh, Gℓ).

Our result asserts that if (Gh, Gℓ) admit well-behaved densities, then, fixing a

signal structure far enough along the sequence, the seller cannot extract the full

surplus. Note that the full surplus v̂0 = vℓ + (vh − vℓ)
π0

π0+1
does not depend on the

signal structure.

Proposition 2.3. Let (Gh, Gℓ) be a pair of cdfs on [0, 1]. Let {(Sk, fh,k, fℓ,k)}k∈N be

a sequence of finite signal structures converging to (Gh, Gℓ).

If Gh and Gℓ admit continuous and strictly positive densities gh and gℓ on [0, 1]

such that gh
gℓ

is strictly increasing, then the following holds for all except finitely many
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k: If the signal structure is given by (Sk, fh,k, fℓ,k), then the seller’s utility is bounded

away from v̂0 across all equilibria.

For the proof, it suffices to show that the pure strategy that always plays the

largest signal fails to be an equilibrium (Lemma 2.2). For expositional purposes, let

λ = 1. Suppressing the dependence on k, let s̄ = s̄k denote the largest signal in the

k’th signal structure.

Suppose towards a contradiction that there is an equilibrium where the seller’s

utility is v̂0 and she plays s̄ in all periods. We consider a one-time deviation in period

1 to a cutoff strictly below s̄. Let s◦ = s◦k denote this cutoff (where we again suppress

the dependence on k). The deviation will have two effects, with opposing implications

for the seller’s utility. The upside from the deviation is that if buyer 1 does not end

up trading, then all later buyers will hold incorrect beliefs. In particular, since s◦ < s̄,

rejecting a cutoff of s◦ is a stronger signal in favor of the bad state ℓ than rejecting s̄.

Therefore, all later buyers will hold a belief that is too optimistic; their willingness

to pay will be too high relative to the true Bayesian posterior. The downside from

the deviation is that if buyer 1 has a private signal strictly above s◦, he will trade

and accrue information rents.

Let us spell this out in more detail. Since buyer 1’s belief does not react to

the seller’s action in round 1, the contribution from buyer 1 to the utility from the

deviation is

P(s̃1 ≥ s◦)E[v|s̃1 = s◦].

Now consider buyer i > 1. The probability that he will trade under the deviation is

P (s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄)

Buyer i receives his on-path recommendation, and hence his belief equals his on-path

belief. Since the candidate equilibrium has the seller recommend s̄ in all periods, the

price that buyer i pays, if he trades, is

E [v|s̃1 < s̄, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄] .
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The seller’s utility from the deviation is therefore

P(s̃1 ≥ s◦)E[v|s̃1 = s◦]

+
∞∑
i=2

(
P (s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄)

× E [v|s̃1 < s̄, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]

)
.

Let us compare this to the full surplus v̂0 (which is the seller’s utility from constantly

recommending s̄). By iterated expectations, we may write v̂0 as

P(s̃1 ≥ s◦)E[v|s̃1 ≥ s◦]

+
∞∑
i=2

(
P (s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄)

× E [v|s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]

)
.

Thus the deviation is profitable if and only if

P(s̃1 ≥ s◦) (E[v|s̃1 = s◦]− E[v|s̃1 ≥ s◦])

+
∞∑
i=2

(
P (s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄)

×
(
E [v|s̃1 < s̄, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]

− E [v|s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]
))

is strictly positive. The difference

E[v|s̃1 = s◦]− E[v|s̃1 ≥ s◦]

is strictly negative, as we infer from the MLRP; this is the information rent left to

buyer 1. Each term inside the infinite sum, however, is strictly positive. To see this,

note that

E [v|s̃1 < s̄, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]
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conditions on (i− 1)-many buyers failing to trade at s̄. However,

E [v|s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]

conditions on one buyer failing to trade at s◦ and (i−2)-many buyers failing to trade

at s̄. Since not trading at s◦ is a stronger signal for the bad state than not trading

at s̄, each term inside the infinite sum is strictly positive.

The seller thus benefits from the deviation if late buyers’ wrong beliefs outweigh

buyer 1’s information rents. The proof of Proposition 2.3 shows that this happens

whenever the signal structure is sufficiently rich. If we choose s◦ = s◦k ever closer to

1 as k → ∞, the fact that the likelihood ratio gh
gℓ

is continuous implies that both the

loss due information rents as well as the gain due to incorrect beliefs vanish. By using

that the likelihood ratio is bounded at the top (which is implied by the fact that the

densities are continuous and strictly positive), we show that the loss vanishes more

rapidly than the gain for a suitable choice of s◦k. In particular, this is the case when

s◦k converges an order of magnitude more slowly to 1 than s̄ = s̄k.

2.5 Full surplus with binary signals

Since Proposition 2.3 concerns rich signals, a natural follow-up question asks how the

surplus is divided when signals are coarse. The next result shows that when signals

are binary we reach a conclusion starkly different from Proposition 2.3.

Proposition 2.4. Let signals be binary, meaning |S| = 2. If (µ, π) is a sequential

equilibrium, then the seller’s strategy is the pure strategy σ̄, and her expected utility

is the full surplus v̂0.

The key observation is that, for binary signals, no strategy induces more pes-

simistic beliefs than constantly playing the highest cutoff s̄. Let
¯
s denote the smallest

signal, which here simply means the only signal different from s̄. A recommendation

of
¯
s is accepted whenever a buyer arrives to the market. Failing to trade at

¯
s therefore

reveals that no buyer arrived to the market. Since this event contains no information

about the value, the belief remains unchanged. Conversely, whenever s̄ does not lead

to a trade, the posterior that the state is h decreases.

For a sequential equilibrium, the observation from the previous paragraph implies

that the posterior induced by σ̄ is also a lower bound on buyers’ off-path beliefs.
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Hence a lower bound on equilibrium utility is given by the utility from deviating to σ̄

and forming the induced prices using the beliefs induced by σ̄. But this lower utility

is nothing but v̂0, as we infer from the discussion in Section 2.2.7

3 Unobservable time-on-the-market

3.1 Model

In this section, we consider another game. Its defining property is that buyers observe

neither the seller’s past recommendations nor the seller’s time-on-the-market. That

is, relative to the game of the previous section, a buyer is now also unaware of the

label of the period in which he is asked to make a move.

The number n of buyers and intermediaries is now finite. At the beginning of the

game, Nature picks a permutation of {1, . . . , n} according to the uniform distribution.

The realized permutation is not observed by any player, and it determines the order

in which buyers and intermediaries arrive to the market. When asked to make a

move, each buyer observes his private signal, the intermediary’s price, and the seller’s

recommendation. Each intermediary observes the seller’s current recommendation.

When in period i the seller recommends a cutoff σi, the buyer’s posterior belief

(expressed as the likelihood ratio of h vs. ℓ) is denoted π∅(σi).
8 In the same situation,

the intermediary will find it optimal to choose a price of v̂(σi, π
∅(σi)). As before, a

buyer finds it optimal to accept σi at a private signal s if and only if s is weakly

greater than σi.

On the seller’s side, we now assume that she incurs a cost c whenever the game

moves to the next period. This cost can be interpreted as costs for soliciting new

buyers, and we assume c ∈ [0, λvℓ].
9

A mixed strategy of the seller is now a distribution µ over the set Sn of finite

7The argument sketched here uses the assumption that arrivals to the market are probabilistic,
meaning λ ∈ (0, 1). Suppose that arrivals are certain, λ = 1. Playing the lowest signal now means
trading with probability one. In a sequential equilibrium, the beliefs of buyers who are reached with
probability zero along the path of play must therefore equal the beliefs induced by σ̄. A similar
argument thus shows that the deviation to σ̄ must still yield v̂0.

8Mnemonically, the superscript ∅ indicates that buyers know neither the seller’s past actions
nor her time-on-the-market.

9The assumption that c is in [0, λvℓ] implies that the seller will always find it optimal to keep
searching until the pool of buyers is exhausted. Specifically, she can always recommend the lowest
signal as a cutoff, leading to trade at a price of at least vℓ when a buyer arrives with probability λ.
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cutoff sequences. Buyers’ beliefs are represented by π∅ : S → [0,∞]. The seller’s

profit from this pair is denoted V ∅(µ, π∅, n, c). (The appendix presents formulas for

the seller’s utility and buyers’ Bayesian posteriors.) Let Γ∅(n, c) denote the game

described here.

Definition 3. A pair (µ, π∅) is an equilibrium of Γ∅(n, c) if µ is a maximizer of

V ∅(·, π∅, n, c), and π∅ satisfies the following: For all s ∈ S, if s is played by µ with

non-zero probability in some period (meaning
∑n

i=1 µ({σ ∈ Sn : σi = s}) > 0), then

π∅(s) is derived from µ via Bayes’ rule.

A strategy of the seller is fully mixed if for all cutoffs there is at least one period

in which the cutoff is played with non-zero probability; that is, all s ∈ S satisfy∑n
i=1 µ({σ ∈ Sn : σi = s}) > 0.10

An equilibrium (µ, π∅) is a sequential equilibrium if there is a sequence {µk}k∈N
of fully mixed strategies and a sequence {π∅

k}k∈N of beliefs satisfying both of the

following.

(1) The sequence {µk}k∈N converges to µ, and the sequence {π∅
k}k∈N converges to

π∅.11

(2) For all k, the beliefs π∅
k are derived from µk via Bayes’ rule.

Lemma 3.1. For all n ∈ N and c ∈ [0, λvℓ] there exists a sequential equilibrium of

Γ∅(n, c).

3.2 Signaling calendar time

Our aim in this section is to show that, along a certain sequence of sequential equi-

libria, the seller can extract the full surplus as the number of buyers grows large and

solicitation costs vanish. However, not all sequences of sequential equilibria have this

property. To state the result formally, given s ∈ S, let F̄ω(s) denote the probability

of observing a signal weakly above s. Recall also that
¯
s denotes the smallest signal.

Proposition 3.2. Let s∗ ∈ S \ {
¯
s}. Let {cn}n∈N be a sequence in [0, λvℓ] converging

to 0. For all n ∈ N, there exists µn, π
∅
n, and an integer jn such that the sequence

{(µn, π
∅
n, jn)}n∈N satisfies all of the following:

10Notice that this notion of a fully mixed strategy differs from the regime with observable time-
on-the-market.

11All strategies and beliefs are viewed as elements of Euclidean space.
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(1) For all but finitely many n ∈ N, the pair (µn, π
∅
n) is a sequential equilibrium of

Γ∅(n, cn).

(2) For all n ∈ N, the seller using µn plays s∗ in the first jn rounds with probability

one; that is, we have µn({σ ∈ Sn : (σ1, . . . , σjn) = (s∗, . . . , s∗)}) = 1.

(3) The sequence {jn}n∈N diverges to ∞.

(4) Along the sequence, the good is traded with probability converging to 1. The

seller’s expected utility and the price at which the good is traded converge almost

surely to

vℓ + (vh − vℓ)
π fh(s

∗)
fℓ(s∗)

F̄ℓ(s
∗)

F̄h(s∗)

π fh(s∗)
fℓ(s∗)

F̄ℓ(s∗)
F̄h(s∗)

+ 1
. (3.1)

In the special case s∗ = s̄ we have F̄ω(s̄) = fω(s̄) for all ω, and hence the term

in (3.1) equals v̂0. That is, the seller gets the full surplus along this sequence of

equilibria. Whenever s∗ is different from s̄, however, the (MLRP) implies

fh(s
∗)

fℓ(s∗)

F̄ℓ(s
∗)

F̄h(s∗)
< 1.

Thus, for s∗ different from s̄, the seller’s equilibrium utility converges to a value

strictly below v̂0.

The basic observation that we use for the proof of Proposition 3.2 is that the

seller’s recommendation contains information about her time-on-the-market. Let us

sketch the proof idea for the case s∗ = s̄. Suppose for a moment that for some integer

j the seller uses a pure strategy σ that recommends s̄ in all of the first j periods,

and never thereafter. When the seller recommends to a buyer an on-path cutoff

different from s̄, this reveals that the seller has unsuccessfully tried to sell the object

for at least j rounds. Since failing to trade the object depresses beliefs, picking a

cutoff different from s̄ thus leads to a price approximately equal to vℓ, provided j is

sufficiently large. Let us compare to this to the price from recommending s̄. Since s̄

is on-path under σ, a buyer’s belief π∅(s̄, σ) after arriving to the market and being

16



recommended s̄ can be computed via Bayes’ rule. This belief is given by

π∅(s̄, σ) = π0

n∑
i=1

1
n
1(σi=s̄)(1− λfh(s̄))

i−1

n∑
i=1

1
n
1(σi=s̄)(1− λfℓ(s̄))i−1

= π0

j∑
i=1

(1− λfh(s̄))
i−1

j∑
i=1

(1− λfℓ(s̄))i−1

.

Evaluating the geometric sums shows that, for large j, this belief approximately

equals π0
fℓ(s̄)
fh(s̄)

. The price v̂(s̄, π∅(s̄, σ)) after s̄ equals the posterior valuation condi-

tional on a private signal of s̄ and conditional on arriving to the market and being

recommended s̄. Hence this price approximately equals

vℓ + (vh − vℓ)
π0

fℓ(s̄)
fh(s̄)

fh(s̄)
fℓ(s̄)

π0
fℓ(s̄)
fh(s̄)

fh(s̄)
fℓ(s̄)

+ 1
= vℓ + (vh − vℓ)

π0

π0 + 1
.

This is nothing but the full surplus v̂0.

In summary, a cutoff of s̄ yields a price of v̂0, whereas deviations from s̄ yields a

price of vℓ (approximately, when j is large). This suggests that the seller’s offering

s̄ for a large number periods j can actually be sustained in equilibrium, leading to

trade with overwhelming probability at v̂0, and hence to the seller’s extracting the

full surplus. A complication in this argument is that the seller also incurs costs for

solicitng new buyers and that the pool of buyers is finite. Since s̄ leads to the smallest

per-period probability of trade, the seller has an incentive to deviate from s̄ to save

on costs or, when the pool of buyers is almost exhausted, to ensure a last minute

sale of the object. Hence we have to consider the possibility that the seller plays

signals other than s̄ along the equilibrium path. This complicates the construction

of equilibrium; care has to be taken to let j (the number of initial periods in which

the seller constantly recommends s̄) diverge to ∞, but not too rapidly.

The proof for general s∗ ∈ S \ {
¯
s} is similar. To understand why, suppose the

seller’s strategy is to play s∗ for the first j rounds. As long as s∗ is not the lowest

signal
¯
s, failing to trade at s∗ depresses beliefs.12 Hence the earlier reasoning implies

that deviating from s∗ leads to a price approximately equal to vℓ, while s
∗ leads to a

strictly higher price (namely the price in (3.1)).

12As remarked at an earlier point, when
¯
s does not lead to a trade in some round, the Bayesian

inference is that no buyer arrived to the market in that round. Non-arrivals reveal nothing about
the state of the world, and hence playing

¯
s for many rounds will not depress beliefs towards zero.
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3.3 Full surplus with binary signals

Proposition 3.2 implies that the players may fail to coordinate on a seller-optimal

equilibrium whenever there are at least three signals. We conclude this section by

addressing the case of binary signals. In parallel to Proposition 2.4, we find that the

seller extracts the full surplus along all sequences of sequential equilibria.

Proposition 3.3. Let signals be binary, meaning |S| = 2. Let {cn}n∈N be a sequence

in [0, λvℓ] converging to 0. For all n ∈ N, let (µn, π
∅
n) be a sequential equilibrium of

Γ∅(n, cn).
13 As n → ∞, the seller’s utility along the sequence of equilibria converges

to v̂0.

Our proof uses the same ideas as our proof of Proposition 2.4. Namely, with

binary signals, the belief π∅
n(s̄) must be bounded below by the posterior induced by

σ̄ (verifying this in the present game is more complicated than in the game with

observable time). It is then easy to verify that the utility from deviating to σ̄ admits

a lower bound which converges v̂0. Since the utility from this deviation is itself a

lower bound on equilibrium utility and since equilibrium utility is bounded above by

v̂0, the claim follows.

4 Related literature

This paper is related to the literature on transparency in dynamic markets with

adverse selection (Fuchs et al., 2016; Hörner and Vieille, 2009; Kaya and Liu, 2015;

Kaya and Roy, 2022a,b,c; Kim, 2017). The paper of Kim (2017) is perhaps closest.

In Kim’s model, uninformed buyers make private offers to the seller of a single unit.

The seller’s costs and the object’s value are the seller’s private information. Kim

compares two regimes that differ in whether buyers observe the seller’s time-on-the-

market. (Kim also studies a version of the model with an inflow of new sellers and

buyers.) When time-on-the-market is unobservable, buyers play stationary strategies.

When it is observable, buyers update on the fact that high types of the seller are more

willing to wait for favorable terms, leading buyers to offer higher prices as the game

progresses. Hence transparency affects the seller’s incentives to delay trade so as to

be offered a high price. In contrast, in our model, delay in trade is a result of the

13As we recall, Lemma 3.1 implies that Γ∅(n, cn) admits a sequential equilibrium for all n.
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seller’s setting high prices (indirectly, by recommending the highest signal cutoff). A

further difference is that the seller is initially uninformed, and buyers learn through

their private signals and delay in trade. Transparency affects this learning process,

and hence the seller’s incentives to delay trade.

In several other papers on dynamic markets with learning, the seller is initially

informed about the value of the good, but additional signals arrive to the market over

time (as in our paper). In Kaya and Kim (2018), Lauermann and Wolinsky (2016),

and Zhu (2012), buyers observe private signals about the value. In Daley and Green

(2012), buyers’ signals are public. We differ from these papers in that, in our model,

there is no initial information asymmetry, but asymmetry develops endogenously

through delay in trade and buyers’ private signals.14 Note that the lack of initial

asymmetry matters: in the game with observable time and unobservable actions, the

proof of Proposition 2.3 uses that the first buyer does not revise his beliefs after

observing the seller’s deviation. One can show that the deviation used in the proof

is not profitable if we let this buyer revise his beliefs arbitrarily.

In the regime with unobservable time, the seller’s action can signal calendar time,

and hence the good’s value. The idea that the seller’s actions signal information

about value is not new. For example, Barsanetti and Camargo (2022) recently explore

this idea in a model where the seller is informed about the value. Lauermann and

Wolinsky (2016), who study a regime with unobservable time, also discuss this idea

as part of a robustness check. A subtle distinction is that in our model the seller

is not initially informed about the value. The informational content of an action

depends on what the seller learns along the equilibrium path.

Taylor (1999) considers a two-period model that is related to ours. In each period,

buyers bid for the good and the seller sets a reserve price. Taylor discusses the

effects of the reserve price on the speed of learning: as in our benchmark model

with observable actions, the seller gains from setting high initial prices to keep future

beliefs high. Taylor further notes that high types of the seller benefit from public

records. We instead focus on the seller’s ability to extract the full surplus in a different

informational setup and with a large number of buyers.

Bose et al. (2006, 2008) study a model close to ours. Namely, a version of our

benchmark with observable actions but where the seller has an infinite number of

14In this regard, we are similar to Hwang (2018), in whose model there is no initial asymmetry,
but asymmetry grows as the seller observes an exogenous private signal.
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units (and chooses prices, rather than recommendations). The history of prices and

sales is public. Bose et al. (2006) study whether the monopolist’s strategy triggers

herding behavior. Bose et al. (2008) characterize optimal offers when signals are

binary. Their results have no immediate counterparts in our benchmark model with

observable actions as we consider the sale of a single unit. Specifically, since selling

a unit is good news about the value, their model admits belief dynamics that are

absent in ours.

In an earlier working paper, Bose et al. (2002) also consider unobservable price

offers when signals are binary and sales are observable. Their Lemma 10 shows that

the seller may be unable to commit to trading exclusively with the most optimistic

signal. The result is driven by the fact that selling a unit is good news about the

value, and hence accelerating trades makes later buyers more optimistic. As noted

above, this effect is absent in our model with a single unit. Indeed, their Lemma 10

sharply contrasts our results for binary signals.

There are further papers investigating other notions of transparency in more dis-

tant settings. The following are some examples. In the bilateral bargaining of Hwang

and Li (2017), the focus is on transparency of on one party’s outside option. In

the multilateral bargaining game of Krasteva and Yildirim (2012), the focus is on

transparency of the negotiation sequence and prices. Chaves (2019) studies how the

transparency of on-going negotiations affects the incentives of third parties to inter-

rupt these negotiations. Dilmé (2022) studies imperfect signals about a long-lived

players actions in repeated bargaining. In the reputation models of Pei (2022a,b),

the question is how limited observability of the long-lived player’s actions affect that

players ability to build a reputation.

5 Conclusion

In a dynamic market for a common value good, we have uncovered a sense in which

hiding information about the seller’s actions but disclosing information about her

time-on-the-market is beneficial to buyers. For future work, it is interesting to con-

sider what changes if the seller has multiple objects for sale (as in the work of Bose

et al. (2006, 2008)) or if there are multiple sellers whose goods have correlated val-

ues. With multiple objects, one can investigate how the transparency of sales affect

equilibrium outcomes. A different intriguing direction could attempt to endogenize
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buyers’ arrival to the market. Our results use that the (random) order in which buyers

arrive to the market is exogenous. What would change if buyers could strategically

time when to solicit an offer from the seller? Lastly, our results suggest interesting

open questions for information design. While we have shown that binary signals are

optimal for the seller in the limit game, it is open what signal structures minimize

the seller’s revenue. Relatedly, what signal structure would maximize or minimize

the overall surplus when there are frictions?

Appendices

Appendix A Observable time-on-the-market

A.1 Definitions and notation

This part of the appendix derives the expressions for buyers’ posteriors belief and the

seller’s expected utility.

Since S is finite, the set S∞ of sequences in S is compact and metric (in the

product metric). This renders ∆(S∞) a compact metrizable space (Aliprantis and

Border, 2006, Theorem 15.11). Let Π denote the set of functions from N×S to [0, π0].

As a countable product of compact intervals, the set Π is a compact metric space

when equipped with the product metric.

In the main text, we initially introduced buyers beliefs as functions mapping to

[0,∞]. As we will see, on-path beliefs always lie in [0, π0]. Restricting off-path beliefs

to [0, π0] does not eliminate equilibria (since the prices, and hence the seller’s utility,

are increasing in buyers’ beliefs). Hence there is no loss in viewing beliefs as element

of Π.

Let Fω denote the cdf. of the signals in state ω. For all s in S, let us define

¯
Fω = Fω(s)− fω(s) as the probability of observing a signal strictly below s. Further,

let F̄ω(s) = 1−
¯
Fω(s) denote the probability of observing a signal weakly above s.
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A.1.1 The seller’s expected utility

Let π ∈ Π and σ ∈ S∞. When the seller uses the pure strategy σ, then in state ω the

game reaches period i with probability
i−1∏
j=1

(
1− λF̄ω(σj)

)
. Conditional on reaching

period i, buyer i ends up buying the object with probability λF̄ω(σi); in that case,

given beliefs π, he pays v̂(σi, πi(σi)). So the seller’s expected utility equals

V (σ, π) =
∞∑
i=1

∑
ω∈{ℓ,h}

αω,0λF̄ω(σi)

(
i−1∏
j=1

(
1− λF̄ω(σj)

))
v̂(σi, πi(s)). (A.1)

The infinite sum is well-defined since for all s ∈ S we have

1− λF̄ω(s) ≤ 1− λfℓ(s̄) < 1, (A.2)

meaning that
i−1∏
j=1

(
1− λF̄ω(σj)

)
is bounded above by (1− λfℓ(s̄))

i−1.

Using the bound in (A.2) and finiteness of S, a routine argument shows that

V (σ, π) is continuous in (σ, π). Hence V is bounded. Thus it makes sense to define

the seller’s expected utility from a mixed strategy µ as

V (µ, π) =

∫
σ∈S∞

V (σ, π) dµ(σ).

Using the bound in (A.2) and finiteness of S once again, we also find that V is

continuous on ∆(S∞)× Π.

A.1.2 Buyers’ beliefs

Given µ ∈ ∆(S∞) and an integer i, let S(i, µ) denote the set of signals s ∈ S satisfying∫
σ∈S∞

1(σi=s) dµ(σ) > 0.
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These are the signals s which µ plays with non-zero probability in round i. For all

s ∈ S(i, µ), let

π̂i(s, µ) = π0

∫
σ∈S∞ 1(σi=s)

i−1∏
j=1

(
1− λF̄h(σj)

)
dµ(σ)

∫
σ∈S∞ 1(σi=s)

i−1∏
j=1

(
1− λF̄ℓ(σj)

)
dµ(σ)

(A.3)

denote the Bayesian posterior likelihood of h versus ℓ conditional on reaching period

i and the seller then offering a cutoff of s.

It is not difficult to see that if s ∈ S(i, µ) and {µk}k is a sequence that weak-∗
converges to µ, then s ∈ S(i, µk) holds for all but finitely many k. In the same situ-

ation, the posterior π̂i(s, µk) is well-defined for all but finitely many k and converges

to π̂i(s, µ).

A.2 Equilibrium Existence

Proof of Lemma 2.1. Let µ0 denote the strategy with the property that all i ∈ N
and s ∈ S satisfy µ0{σ ∈ S∞ : σi = s} = 1

|S|+1
. That is, the seller randomizes

uniformly over S in each period. This strategy µ0 exists as one may verify, say, via

an application of Ionescu-Tulcea’s theorem (Bogachev, 2007, Theorem 10.7.3).

Given a strategy µ′ and an integer k, note that (1 − 1
k
)µ′ + 1

k
µ0 is fully mixed.

Hence the Bayesian posterior belief as defined (A.3) induced by (1 − 1
k
)µ′ + 1

k
µ0 is

well-defined. Let us denote this belief by π̂(·|µ′, k).15 Consider the correspondence

µ′ 7→ argmax
µ∈∆(S∞)

V (µ, π̂(·|µ′, k))

As observed in Appendix A.1.2, buyer’s beliefs are continuous in the seller’s strategy

when the strategy is fully mixed. That is µ′ 7→ π̂(·|µ′, k) is continuous. We further

noted in Appendix A.1.1 that V is jointly continuous in the seller’s strategy and

beliefs. An application of Berge’s Maximum Theorem (Aliprantis and Border, 2006,

15That is, π̂(·|µ′, k) is defined for all i and s by

π̂i(s|µ′, k) = π̂i

(
s,

(
1− 1

k

)
µ′ +

1

k
µ0)

)
.
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Theorem 17.31) implies that the above argmax-correspondence is non-empty and

compact-valued, and upper-hemicontinuous. Since V is linear in the seller’s strategy,

the argmax-correpondence is convex-valued, too. We thus infer from the Kakutani-

Fan-Glicksberg Theorem (see e.g. Corollary 17.55 of Aliprantis and Border (2006,

p. 583)) that for all k there exists a strategy µ∗
k satisfying

µ∗
k ∈ argmax

µ∈∆(S∞)

V (µ, π̂(·|µ∗
k, k)).

Let π∗
k denote the belief π̂(·|µ∗

k, k).

By compactness of ∆(Σ∞) and Π, the sequence {µ∗
k, π

∗
k}k∈N admits a convergent

subsequence. Let this be the sequence itself, and let (µ∗, π∗) denote the limit. We

claim that (µ∗, π∗) is a sequential equilibrium. To that end, we note that µ∗ is the

limit of the sequence {(
1− 1

k

)
µ∗
k +

1

k
µ0

}
k∈N

.

For all k, the strategy
(
1− 1

k

)
µ∗
k +

1
k
µ0 is fully mixed and the belief π∗

k is obtained

from
(
1− 1

k

)
µ∗
k+

1
k
µ0 via Bayes’ rule. Therefore, to show that (µ∗, π∗) is a sequential

equilibrium, it suffices to show that µ∗ maximizes V (·, π∗) across ∆(S∞). Letting

µ be an arbitrary strategy, we know that for all k we have V (µ∗
k, π

∗
k) ≥ V (µ, π∗

k).

Taking k → ∞ and using continuity of V , we infer that V (µ∗, π∗) ≥ V (µ, π∗) holds,

as promised.

A.3 Failure of surplus extraction

A.3.1 Auxiliary results

Proof of Lemma 2.2. Let (µ, π) be an equilibrium. Let i ∈ N and σi ∈ S(i, µ). If

trade happens at (i, σi), the price equals

v̂(σi, πi(σi)) = vℓ + (vh − vℓ)
πi(σi)

fh(σi)
fℓ(σi)

πi(σi)
fh(σi)
fℓ(σi)

+ 1
.
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Since σi ∈ S(i, µ), the belief πi(σi) is derived from Bayes’ rule. Using (A.3), one may

verify that πi(σi) ∈ (0,∞) holds. By the MLRP, the price in the previous display is

no greater than

vℓ + (vh − vℓ)
πi(σi)

F̄h(σi)

F̄ℓ(σi)

πi(σi)
F̄h(σi)

F̄ℓ(σi)
+ 1

.

This is the posterior valuation conditional on the joint event that a signal above σi

realizes, the game reaches period i, and the sellers recommends σi; let us denote this

event by Ei(σi). The posterior valuation conditional on Ei(σi) is E[v|Ei(σi)]. Note

that since πi(σi) ∈ (0,∞) we have v̂(σi, πi(σi)) < E[v|Ei(σi)] whenever σi < s̄ holds.

Trade happens at (i, σi) if and only if the event Ei(σi) occurs. We know from the

bound in (A.2) that the probability of not trading within the first i rounds converges

to 0 as i → ∞, uniformly across all strategies of the seller. Put differently, as i → ∞,

the probability that the event

⋃
(σ1,...,σi)∈Si

(
i⋃

j=1

Ej(σj)

)

does not occur converges to 0. It follows from the Law of Iterated Expectations that

the seller’s profit is at most the prior valuation v̂0, with equality if and only if the

induced cutoff in each period is s̄ with probability one. The unique strategy for which

this can hold is therefore the pure strategy σ̄.

Lemma A.1. Let (gh, gℓ) and {(Sk, fh,k, fℓ,k)}k∈N be as in the hypothesis of Proposi-

tion 2.3. For all k, let s̄k = 1 − 1/k. There exists a sequence {s◦k}k∈N such that for

all except finitely-many k we have s◦k ∈ Sk, and such that (the following limits exist

and satisfy)

∞ > lim
k→∞

fh,k(s̄k)

fℓ,k(s̄k)
> 1, (A.4a)

lim
k→∞

fh,k(s̄k)

1−
¯
Fℓ,k(s◦k)

= 0, (A.4b)

lim
k→∞

fh,k(s̄k)

fℓ,k(s̄k)

fℓ,k(s
◦
k)

fh,k(s◦k)
= 1. (A.4c)

Proof of Lemma A.1. For all k, let s◦k = max{s ∈ Sk : s ≤ 1− 1/
√
k}. Note that we
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have s̄k = 1− 1/k.

Considering (A.4a), we note that
fh,k(s̄k)

fℓ,k(s̄k)
= 1−Gh(1−1/k)

1−Gℓ(1−1/k)
converges to gh(1)/gℓ(1),

as an application of L’Hôpital’s rule shows. This limit is strictly greater than one.

Next consider (A.4b). The ratio
fh,k(s̄k)

1−
¯
Fℓ,k(s

◦
k)

equals 1−Gh(1−1/k)

1−Gℓ(1−1/
√
k)

approximately. An-

other application of L’Hôpital’s rule shows that the limit of the latter is zero.

Turning to (A.4c), we have:16

fh,k(s̄k)

fℓ,k(s̄k)

fℓ,k(s
◦
k)

fh,k(s◦k)

≈
(
1−Gh(1− 1/k)

1−Gℓ(1− 1/k)

)(
Gℓ(1 + 1/k − 1/

√
k)−Gℓ(1− 1/

√
k)

Gh(1 + 1/k − 1/
√
k)−Gh(1− 1/

√
k)

)
.

An application of L’Hôpital’s rule shows that the limit of this term equals the limit

of (
gh(1)

gℓ(1)

)(
gℓ(1 + 1/k − 1/

√
k)(1−

√
k/2) + gℓ(1− 1/

√
k)
√
k/2

gh(1 + 1/k − 1/
√
k)(1−

√
k/2) + gh(1− 1/

√
k)
√
k/2

)
.

Since gh and gℓ are continuous, this term converges to one, as desired.

Lemma A.2. If s and s′ are signals in S satisfying fh(s) ≥ fℓ(s) and s′ > s, then

1− λF̄h(s
′)

1− λF̄ℓ(s′)
>

1− λF̄h(s)

1− λF̄ℓ(s)

holds.

Proof of Lemma A.2. It suffices to verify this for the case where s′ is the signal di-

rectly above s. In that case, we have
¯
Fω(s) + fω(s) =

¯
Fω(s

′). Standard algebraic

manipulations show

1− λF̄h(s
′)

1− λF̄ℓ(s′)
− 1− λF̄h(s)

1− λF̄ℓ(s)

=
λ
(
fh(s)(1− λF̄ℓ(s))− fℓ(s)1− λF̄h(s)

)(
1− λF̄ℓ(s′)

) (
1− λF̄ℓ(s)

) .

16When {xk}k∈N and {yk}k∈N are sequences of real numbers, we write xk ≈ yk to mean
limk→∞ xk/yk = 1.
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The (MLRP) implies (1 − λF̄ℓ(s)) ≥ (1 − λF̄h(s), and we have fh(s) ≥ fℓ(s) by

assumption.

A.3.2 Proof of Proposition 2.3

Proof of Proposition 2.3. We will prove that, for large enough k, there does not exist

an equilibrium in which the seller’s expected utility equals v̂0. This implies that her

utility is bounded away from v̂0 across all equilibria. For, otherwise, compactness of

∆(S∞) × Π lets us extract a convergent subsequence of equilibria along which her

utility converges to v̂0; the limit of this subsequence will be an equilibrium in which

her utility equals v̂0, and we have a contradiction.

For all k, let s̄k = 1 − 1/k, and let s◦k be as in the conclusion of Lemma A.1.

In what follows, we will suppress the dependence of k from the notation by writing

(S, fh, fℓ, s
◦, s̄) instead of (Sk, fh,k, fℓ,k, s

◦
k, s̄k). No confusion should arise.

In light of Lemma 2.2, we can show that there is no equilibrium where the seller’s

expected utility equals v̂0 by showing that the pure strategy σ̄ is not an equilibrium.

Towards a contradiction, suppose σ̄ is supported in equilibrium by some beliefs π of

the buyers. We will argue that, for all except finitely-many k, the following strategy

constitutes a profitable deviation from σ̄ for the seller: In the first period, the seller

recommends s◦; in all later periods i, the seller recommends s̄. Let σ denote this

sequence of recommendations.

In equilibrium, the first buyer’s beliefs do not depend on the seller’s action. Thus

the prices induced by the deviation are v̂(s◦, π0) = E[v|s̃ = s◦] in period 1 and

v̂(s̄, π̂i(s̄, σ̄)) for all i ≥ 2. To economize on notation, let

x◦
ω = 1− λF̄ω(s̄) and x̄ω = 1− λF̄ω(s̄).

Thus x◦
ω and x̄ω, respectively, denote the probabilities of not trading after recom-

mending cutoffs s◦ and s̄, respectively, within a given period.

We can now write the seller’s utility from the deviation to σ as

E[v|s̃ = s◦]
∑

ω∈{ℓ,h}

λαω,0F̄ω(s̄)

+
∞∑
i=2

v̂(s̄, π̂i(s̄, σ̄))
∑

ω∈{ℓ,h}

λαω,0F̄ω(s̄)x
◦
ωx̄

i−2
ω

 .

(A.5)
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We complete the proof by arguing that, for all but finitely-many k, the term in the

previous expression is strictly greater than v̂0.

Consider the following equality for the expected utility from the deviation (the

first expression is simply a restatement of the expected utility from the deviation;

the equality adds a zero):

v̂(s◦, π0)
∑

ω∈{ℓ,h}

λαω,0F̄ω(s
◦)

+
∞∑
i=2

v̂(s̄, π̂i(s̄, σ̄))
∑

ω∈{ℓ,h}

λαω,0fω(s̄)x
◦
ωx̄

i−2
ω

=(E[v|s̃ = s◦]− E[v|s̃ ≥ s◦])
∑

ω∈{ℓ,h}

λαω,0F̄ω(s
◦) (A.6)

+
∞∑
i=2

(
(v̂(s̄, π̂i(s̄, σ̄))− v̂(s̄, π̂i(s̄, σ)))

×
∑

ω∈{ℓ,h}

λαω,0fω(s̄)x
◦
ωx̄

i−2
ω

) (A.7)

+ E[v|s̃ ≥ s◦]
∑

ω∈{ℓ,h}

λαω,0F̄ω(s
◦) (A.8)

+
∞∑
i=2

v̂(s̄, π̂i(s̄, σ))
∑

ω∈{ℓ,h}

λαω,0fω(s̄)x
◦
ωx̄

i−2
ω (A.9)

Iterated expectations show that the sum of (A.8) and (A.9) equals the prior value

v̂0.
17 Thus, to show that utility from the deviation is strictly greater than v̂0, it

suffices to show that the sum of (A.6) and (A.7) is strictly positive.

Several lines of algebra establish the following identities:

E[v|s̃ = s◦]− E[v|s̃ ≥ s◦]

=
(vh − vℓ)αhαℓ

(
fh(s

◦)F̄ℓ(s
◦)− fℓ(s

◦)F̄h(s
◦)
)( ∑

ω∈{ℓ,h}
αω,0fω(s◦)

)( ∑
ω∈{ℓ,h}

αω,0F̄ω(s◦)

) ,

17For each i ≥ 2, the summand in (A.9) is the probability that trade happens in period i under
the sequence σ. multiplied by the posterior value conditional on said event. In (A.8), we note that
E[v|s̃ ≥ s◦]

∑
ω∈{ℓ,h}

λαω,0F̄ω(s
◦) is precisely that trade happens in period 1 under σ multiplied by

the posterior value on that event.
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and

v̂(s̄, π̂i(s̄, σ̄))− v̂(s̄, π̂i(s̄, σ))

=
(vh − vℓ)αhαℓfh(s̄)fℓ(s̄)x̄

i−2
h x̄i−2

ℓ (x̄hx
◦
ℓ − x̄ℓx

◦
h)( ∑

ω∈{ℓ,h}
αω,0fω(s̄)x̄i−1

ω

)( ∑
ω∈{ℓ,h}

αω,0fω(s̄)x◦
ωx̄

i−2
ω

) .

Notice that the positive term (vh − vℓ)αhαℓ appears in both of the previous two

identities. For the purposes of evaluating the sign of the sum of (A.6) and (A.7),

we may ignore this term. If we now plug the previous two identities back into (A.6)

and (A.7), it follows that we must verify that the following sum is strictly positive

sufficiently far enough along the sequence of signal structures:(
fh(s

◦)F̄ℓ(s
◦)− fℓ(s

◦)F̄h(s
◦)
)∑

ω∈{ℓ,h}
αω,0fω(s◦)

(A.10)

+
∞∑
i=2

fh(s̄)fℓ(s̄)x̄
i−2
h x̄i−2

ℓ (x̄hx
◦
ℓ − x̄ℓx

◦
h)∑

ω∈{ℓ,h}
αω,0fω(s̄)x̄i−1

ω

. (A.11)

For convenience, let us restate the implications of Lemma A.1 (the dependence

on k being suppressed in the notation).

∞ > lim
k→∞

fh(s̄)

fℓ(s̄)
> 1, (A.12a)

lim
k→∞

fh(s̄)

1−
¯
Fℓ(s◦)

= 0, (A.12b)

lim
k→∞

fh(s̄)

fℓ(s̄)

fℓ(s
◦)

fh(s◦)
= 1. (A.12c)

We continue by establishing a lower bound on the term in (A.11). Consider the

difference

x̄hx
◦
ℓ − x̄ℓx

◦
h

=(1− λfh(s̄))(1− λF̄ℓ(s
◦))− (1− λfℓ(s̄))(1− λF̄h(s

◦).
(A.13)

We claim that this difference is strictly positive for all large k. We know from (A.12a)

that fh(s̄)/fℓ(s̄) is strictly greater than one and eventually bounded away from one.
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Further, fh(s̄)
fℓ(s̄)

fℓ(s
◦)

fh(s◦)
approaches one. Thus fh(s

◦)/fℓ(s
◦) must be strictly larger than

one for all sufficiently large k. It now follows from Lemma A.2 that (A.13) is strictly

positive for such k.

Next, consider the ratio

x̄i−2
ℓ∑

ω∈{ℓ,h}
αω,0fω(s̄)x̄i−1

ω

. (A.14)

Recall the definition xω(s) = 1− λ(1−
¯
Fω(s)). The (MLRP) implies x̄i−1

h /x̄i−2
ℓ ≤ 1,

and hence the following is a lower bound on (A.14):

x̄i−2
ℓ∑

ω∈{ℓ,h}
αω,0fω(s̄)x̄i−1

ω

≥ 1∑
ω∈{ℓ,h}

αω,0fω(s̄)
. (A.15)

The fact that the term in (A.13) is strictly positive and the inequality in (A.15)

together imply that the following is a lower bound on (A.11):

∞∑
i=2

fh(s̄)fℓ(s̄)x̄
i−2
h x̄i−2

ℓ (x̄hx
◦
ℓ − x̄ℓx

◦
h)∑

ω∈{ℓ,h}
αω,0fω(s̄)x̄i−1

ω

≥ fh(s̄)fℓ(s̄)∑
ω∈{ℓ,h}

αω,0fω(s̄)
(x̄hx

◦
ℓ − x̄ℓx

◦
h)

∞∑
i=2

x̄i−2
h

=
fh(s̄)fℓ(s̄)∑

ω∈{ℓ,h}
αω,0fω(s̄)

(x̄hx
◦
ℓ − x̄ℓx

◦
h)

1

1− x̄h

.

If we plug back in the definition xω(s) = 1− λ(1−
¯
Fω(s)) = 1− λF̄ω(s), we obtain

fℓ(s̄)
(1− λfh(s̄))(1− λF̄ℓ(s

◦))− (1− λfℓ(s̄))(1− λF̄h(s
◦))

λ
∑

ω∈{ℓ,h}
αω,0fω(s̄)

. (A.16)

To summarize: We may complete the proof by verifying that the sum of (A.10)
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and (A.16) is strictly positive for all sufficiently large k. This sum reads(
fh(s

◦)F̄ℓ(s
◦)− fℓ(s

◦)F̄h(s
◦)
)∑

ω∈{ℓ,h}
αω,0fω(s◦)

(A.17)

+fℓ(s̄)
(1− λfh(s̄))(1− λF̄ℓ(s

◦))− (1− λfℓ(s̄))(1− λF̄h(s
◦))

λ
∑

ω∈{ℓ,h}
αω,0fω(s̄)

. (A.18)

It is useful to rearrange the sum of (A.17) and (A.18) before proceeding.

Dividing the sum of (A.17) and (A.18) by

fℓ(s̄)

F̄ℓ(s◦)
∑

ω∈{ℓ,h}
αω,0fω(s̄)

leaves its sign unchanged. Rearranging the resulting terms further via standard

algebraic manipulations, we find that the sign of the sum of (A.17) and (A.18) is the

sign of fh(s
◦)

fℓ(s̄)

∑
ω∈{ℓ,h}

αω,0fω(s̄)∑
ω∈{ℓ,h}

αω,0fω(s◦)
− 1


− F̄h(s

◦)

F̄ℓ(s◦)

fℓ(s
◦)

fℓ(s̄)

∑
ω∈{ℓ,h}

αω,0fω(s̄)∑
ω∈{ℓ,h}

αω,0fω(s◦)
− 1


+
fℓ(s̄)(1− λF̄h(s

◦))− fh(s̄)(1− λF̄ℓ(s
◦))

F̄ℓ(s◦)

=

(
π0

(
fh(s̄)

fℓ(s̄)
− 1

)
+ 1− fℓ(s

◦)

fh(s◦)

)(
fℓ(s

◦)

fh(s◦)
+ π0

)−1

(A.19)

−π0
F̄h(s

◦)

F̄ℓ(s◦)

fh(s
◦)

fℓ(s◦)

(
fh(s̄)

fℓ(s̄)

fℓ(s
◦)

fh(s◦)
− 1

)(
1 + π0

fh(s
◦)

fℓ(s◦)

)−1

(A.20)

+
fℓ(s̄)(1− λF̄h(s

◦))− fh(s̄)(1− λF̄ℓ(s
◦))

F̄ℓ(s◦)
. (A.21)

We complete the proof by arguing that, along the sequence of signal structures,

the term in (A.19) is positive (far enough along the sequence) and bounded away

from 0, whereas the sum of (A.20) and (A.21) admits a lower bound that converges
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to 0.

Beginning with (A.19) we infer from (A.12a) and (A.12b) that fh(s̄)
fℓ(s̄)

− 1 and

1− fℓ(s
◦)

fh(s◦)
are eventually and bounded away from 0. We also know from (A.12a) that(

fℓ(s
◦)

fh(s◦)
+ π0

)−1

is bounded. Hence (A.19) is eventually positive and bounded away

from 0.

Turning to (A.19), we infer from (A.21) that
(

fh(s̄)
fℓ(s̄)

fℓ(s
◦)

fh(s◦)
− 1
)
converges to 0. The

ratio F̄h(s
◦)

F̄ℓ(s◦)
is bounded (it converges to the ratio of the densities at 1.) Simultaneously,

we know from (A.12a) and (A.12c) that all others terms in (A.19) are bounded along

the sequence. Thus (A.20) converges to 0.

Lastly, turning to (A.21), we have the following lower bound on (A.21):

fℓ(s̄)(1− λF̄h(s
◦))− fh(s̄)(1− λF̄ℓ(s

◦))

F̄ℓ(s◦)
≥ −fh(s̄)(1− λF̄ℓ(s

◦))

F̄ℓ(s◦)
.

We conclude from (A.12c) that this lower bound converges to 0.

A.4 Surplus extraction with binary signals

Proof of Proposition 2.4. We proceed along a number of claims.

Claim A.3. If µ′ ∈ ∆(S∞) is a fully mixed mixed strategy, then for all i and s we

have π̂i(s, µ
′) ≥ π̂i(s̄, σ̄)

Proof of Claim A.3. Given an integer i and a pure strategy σ, let N(i, σ) = |{j ∈
{1, . . . , i− 1} : σj = s̄}|. That is, N(i, σ) is the number of times σ plays s̄ in rounds

1 to i− 1.
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Since signals are binary, we may write the posterior π̂i(s, µ
′) as follows:

π̂i(s, µ
′) =π0

∑
σ∈Sn

1(σi=s)µ
′(σ)

i−1∏
j=1

(1− λ(1−
¯
Fh(σj)))

∑
σ∈Sn

1(σi=s)µ′(σ)
i−1∏
j=1

(1− λ(1−
¯
Fℓ(σj)))

=π0

∑
σ∈Sn

1(σi=s)µ
′(σ) (1− λ)(i−1)−N(i,σ) (1− λfh(s̄))

N(i,σ)

∑
σ∈Sn

1(σi=s)µ′(σ) (1− λ)(i−1)−N(i,σ) (1− λfℓ(s̄))
N(i,σ)

=π0

∑
σ∈Sn

1(σi=s)µ
′(σ)

(
1−λfh(s̄)

1−λ

)N(i,σ)

∑
σ∈Sn

1(σi=s)µ′(σ)
(

1−λfℓ(s̄)
1−λ

)N(i,σ)
.

The belief π̂i(s̄, σ̄) is given by

π̂i(s̄, σ̄) =π0

(
1− λfh(s̄)

1− λfℓ(s̄)

)i−1

.

Hence the sign of difference π̂i(s, µ
′)− π̂i(s̄, σ̄) is the sign of

∑
σ∈Sn

1(σi=s)µ
′(σ)

(
(1− λfℓ(s̄))

i−1

(
1− λfh(s̄)

1− λ

)N(i,σ)

− (1− λfh(s̄))
i−1

(
1− λfℓ(s̄)

1− λ

)N(i,σ)
)

=
∑
σ∈Sn

(
1(σi=s)µ

′(σ)

(1− λ)N(i,σ)

(
(1− λfh(s̄))(1− λfℓ(s̄))

1− λ

)N(i,σ)

×
(
(1− λfℓ(s̄))

i−1−N(i,σ) − (1− λfh(s̄))
i−1−N(i,σ)

))
.

This sum is weakly positive since fℓ(s̄) < fh(s̄) holds and since N(i, σ) is no greater

than i− 1.

Claim A.4. If (µ, π) is a sequential equilibrium of Γ(∞, 0), then the seller’s equilib-

rium expected utility is E[v|π0], and µ is the pure strategy σ̄

Proof of Claim A.4. Since (µ, π) is a sequential equilibrium, the belief π is the point-
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wise limit of a sequence of Bayesian posteriors derived from fully-mixed strategies.

Thus Claim A.3 implies that, for arbitrary i ∈ N and s ∈ S, the belief πi(s) is bounded

below by π̂i(s̄, σ̄). The seller’s utility is pointwise-increasing in the beliefs. Hence,

given beliefs π, and the seller’s utility from the pure strategy σ̄ is at least V (σ̄, π̂(·, σ̄)).
Since π̂i(s̄, σ̄) is the posterior induced by σ̄, the reasoning of Lemma 2.2 via iterated

expectations shows that V (σ̄, π̂(·, σ̄)) equals v̂0. Thus v̂0 is a lower bound on the

seller’s equilibrium utility. We know from Lemma 2.2 that v̂0 is also an upper bound

on the seller’s equilibrium utility. Hence another application of Lemma 2.2 shows

that the seller’s utility is v̂0 and that her strategy is σ̄.

Appendix B Unobservable time-on-the-market

B.1 Definitions and notation

In this section we derive expressions for the seller’s expected utility and buyers’

posterior beliefs in the game of Section 3.

Let n ∈ N and let c ∈ [0, λvℓ]. A mixed strategy of the seller is an element µn of

∆(Sn). Buyers’ beliefs are represented by a function π∅
n : S → [0, π0]. (In the main

text, we introduced beliefs as a function mapping to [0,∞], but, as in Appendix A.1,

it is without loss to focus on beliefs in [0, π0].)

B.1.1 The seller’s expected utility

Given π∅
n, the seller’s expected utility from a mixed strategy µn is

V ∅(µn, π
∅
n, n, c) =

∑
σ∈Sn

µn(σ)
n∑

i=1

∑
ω∈{ℓ,h}

(
αω

i−1∏
j=1

(
1− λF̄ω(σj)

)
×
(
λF̄ω(σi)v̂(σi, π

∅(σi))− c
))

.

(B.1)

B.1.2 Buyers’ inference

Given a mixed strategy µn, let Sn(µn) denote the subset of signals that µn plays with

non-zero probability in at least one of the n periods. That is, s is in Sn(µn) if and
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only if

n∑
i=1

∑
σ∈Sn

1(σi=s)µn(σ) > 0. (B.2)

Given µn and s ∈ Sn(µn), the Bayesian posterior conditional on arriving to the market

on being recommended s is well-defined. We denote it by π̂∅
n(s, µn). It is given by

π̂∅
n(s, µn) = π0

∑
σ∈Sn

n∑
i=1

1(σi=s)µn(σ)
i−1∏
j=1

(
1− λF̄ω(σj)

)
∑

σ∈Sn

n∑
i=1

1(σi=s)µn(σ)
i−1∏
j=1

(
1− λF̄ω(σj)

) . (B.3)

A mixed strategy µn is fully mixed if Sn(µn) = S; that is, if each cutoff is recom-

mended with non-zero probability in at least one period.

B.2 Auxiliary Results

This part of the appendix presents some auxiliary results.

Lemma B.1. Let n ∈ N, c ∈ [0, λvℓ], and µn ∈ ∆(Sn). Let π∅
n : S → [0, 1] be a

function that agrees with π̂∅
n(·, µn) at all s in Sn(µn). Then we have

V ∅(µn, π
∅
n, n, c) ≤ v̂0.

The proof is analogous to that of Lemma 2.2 and is omitted.

The next result is chiefly used in the upcoming proof of Proposition 3.2; the reader

may prefer to skip the result for now returning to it as needed. Consider an auxiliary

fixed-point problem in which, for some given integer j and signal s∗, the seller is

restricted to randomizing over pure strategies in which s∗ is played in all of the first

j rounds. Formally, given n ∈ N and j ∈ N ∪ {0} such that n− 1 ≥ j, let

Σn,j,s∗ = {(σ1, . . . , σn) ∈ Sn : (∀k′ : 1≤k′≤j, σk′ = s∗)} .

The set of probability distributions over Σn,j,s∗ is denoted by ∆(Σn,j,s∗). As a con-

vention, for j = 0, the set Σn,j,s∗ means the set Sn.
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Lemma B.2. Let c ∈ [0, vℓ]. Let n ∈ N and j ∈ N ∪ {0} be such that n− 1 ≥ j. Let

s∗ ∈ S. There exists a sequence {µk}k∈N in ∆(Σn,j,s∗), a strategy µn,j in ∆(Σn,j,s∗),

and a belief π∅
n,j satisfying all of the following:

(1) We have

µn,j ∈ argmax
µ′∈∆(Σn,j,s∗ )

V ∅(µ′, π∅
n,j, n, c). (B.4)

(2) For all k, the strategy µk is fully mixed.

(3) The sequence {µk}k∈N converges to µn,j as k → ∞.

(4) The sequence of induced beliefs {π̂∅
n(·, µk)}k converges to π∅

n,j as k → ∞.

The proof proceeds via routine arguments and is omitted.

As an immediate corollary, we find that Γ∅(n, c) admits some sequential equilib-

rium. In the main text, this was stated as Lemma 3.1.

Proof of Lemma 3.1. Invoke Lemma B.2 with j = 0.

The next auxiliary lemma will be useful for the upcoming proof of Proposition 3.2;

the reader may prefer to skip the result for now returning to it as needed. It char-

acterizes the beliefs which are induced by a strategy in ∆(Σn,j,s∗) for large n and j.

Verbally, all on-path cutoffs different from s∗ lead to a belief that the state is ℓ with

overwhelming probability. Conversely, the belief at s∗ is approximately π0
F̄ℓ(s

∗)
F̄h(s∗)

.

Lemma B.3. Let s∗ ∈ S \ {
¯
s}. Let {jn}n∈N be a sequence of integers. For all n,

let µn be a mixed strategy in ∆(Σn,jn,s∗). If the sequence (jn)n∈N diverges to +∞,

then for every ε > 0 there exists nε ∈ N such that for all n greater than nε all of the

following are true:

(1) If s is in Sn(µn) \ {s∗}, then π̂∅
n(s

∗, µn) < ε holds.

(2) We have ∣∣∣∣π̂∅
n(s

∗, µn)− π0
F̄ℓ(s

∗)

F̄h(s∗)

∣∣∣∣ < ε. (B.5)

Proof of Lemma B.3. Let ε > 0. Turning to the first claim, let n be arbitrary and
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consider a signal s in Sn(µn) \ {s∗}. The posterior π̂∅
n(s, µn) is defined to be

π̂∅
n(s, µn) =

∑
σ∈Sn

n∑
i=1

1(σi=s)µn(σ)
∏i−1

j=1

(
1− λF̄h(σj)

)
∑

σ∈Sn

n∑
i=1

1(σi=s)µn(σ)
∏i−1

j=1

(
1− λF̄ℓ(σj)

) .
By definition of ∆(Σn,jn,s∗), the distribution µn assigns positive probability to a pure

strategy σ only if σ is in Σn,jn,s∗ . Accordingly, conditional on seeing a signal different

from s∗, a buyer can be sure that at least jn rounds have passed in which s∗ was not

accepted. This implies the following identity for arbitrary ω:

∑
σ∈Sn

n∑
i=1

1(σi=s)µn(σ)
i−1∏
j=1

(
1− λF̄ω(σj)

)
=
(
1− λF̄ω(s

∗)
)jn ∑

σ∈Σn,jn,s∗

n∑
i=jn+1

1(σi=s)µn(σ)
i−1∏

j=jn+1

(
1− λF̄ω(σj)

)
.

Hence the posterior belief π̂∅
n(s, µn) reads

π̂∅
n(s, µn) =

(
1− λF̄h(s

∗)

1− λF̄ℓ(s∗)

)jn−1

∑
σ∈Σn,jn,s∗

n∑
i=jn

1(σi=s)µn(σ)
∏i−1

j=1

(
1− λF̄h(σj)

)
∑

σ∈Σn,jn,s∗

n∑
i=jn

1(σi=s)µn(σ)
∏i−1

j=1

(
1− λF̄ℓ(σj)

) .
The (MLRP) implies that the second fraction in this expression is less than 1. More-

over, since s∗ is not
¯
s, we infer from the (MLRP) that 1 − λF̄h(s

∗) < 1 − λF̄ℓ(s
∗)

holds. Thus there is some integer j′ε satisfying

jn ≥ j′ε ⇒
(
1− λF̄h(s

∗)

1− λF̄ℓ(s∗)

)jn−1

< ε.

In particular, for such jn above j′ε, the belief π̂
∅
n(s, µn) is less than ε for all s ∈ Sn(µn).

Keeping this in mind, let us turn to the second part of the claim.

Consider the probability that a buyer assigns to following joint event: He arrives

to the market when the object has not yet been traded and is then offered a signal of

s∗. Conditional on the state being ω, we denote this probability by qω,n; it is given
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by

qω,n =
1

n

∑
σ∈Sn

n∑
i=1

1(σi=s∗)µn(σ)
i−1∏
j=1

(
1− λF̄ω(σj)

)
.

Using that µn is in ∆(Σn,jn,s∗), we find that qω,n equals

1

n

(
jn∑
i=1

(
1− λF̄ω(s

∗)
)i−1

+
(
1− λF̄ω(s

∗)
)jn ∑

σ∈Σn,jn,s∗

n∑
i=jn+1

µn(σ)1(σi=s∗)

i−1∏
j=jn+1

(
1− λF̄ω(σj)

))

A moment’s thought reveals that the following are lower and upper bounds, respec-

tively, on qω,n:

1

n

jn∑
i=1

(
1− λF̄ω(s

∗)
)i−1

≤qω,n

≤ 1

n

(
jn∑
i=1

(
1− λF̄ω(s

∗)
)i−1

)
+
(
1− λF̄ω(s

∗)
)jn n∑

i=jn+1

(1− λF̄ω(s̄))
i−(jn+1).

Recall that jn → ∞ as n → ∞. Hence we have nqω,n → 1/(λF̄ω(s
∗) as n → ∞. The

posterior belief π̂∅
n(s

∗, µn) is equal to the ratio π0qh,n/qℓ,n. Hence, there is an integer

j′′ε such that π̂∅
n(s

∗, µn) is within ε of π0F̄ℓ(s
∗)/F̄h(s

∗) if jn is greater than j′′ε .

Let jε = max(j′ε, j
′′
ε ). The preceding arguments show that all desired inequalities

hold for µn if jn is above jε. Recalling that jn → ∞ as n → ∞, the claim follows.

B.3 Proof of Proposition 3.2

Before delving into the details, let us sketch the idea. Let s∗ ∈ S \ {
¯
s}. We begin by

defining a sequence (jn)n∈N of integers. Think of this as a sequence that diverges to∞,

but not too rapidly. In the game with n buyers, we then consider a restricted notion of

equilibrium in which the seller is required to play s∗ in the first jn rounds (including

in deviations). Lemma B.2 from Appendix B.2 shows that such an “equilibrium”

exists. As long as jn diverges to ∞, Lemma B.3 from Appendix B.2 then implies
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that all signals different from s∗ induce buyers to update their beliefs such that

their willingness to pay is approximately vℓ; this step requires that s∗ be different

from
¯
s. Moreover, their willingness to pay after s∗ is bounded away from vℓ; it is

approximately the expression for the seller’s limit utility as given in (3.1). We can

then show that, far enough along the sequence, the seller will indeed find it optimal

to only play s∗ in the first, say, in rounds. To complete the proof, it is therefore

sufficient to check that in is eventually larger than jn, i.e. that the earlier constraint

on the seller’s strategy is eventually non-binding. For this final step, we require that

jn not diverge too quickly. Intuitively, the seller may have a motive to save on search

costs even if this entails trading at an undesirable price. Thus the speed at which

costs cn vanish needs to be taken into account when letting jn diverge.

Proof of Proposition 3.2. We shall first define the sequence of integers {jn}n∈N. Our

candidates for (µn, π
∅
n) will then be derived from Lemma B.2.

For all n let jn denote the largest integer (or zero) smaller than

min

(
1

2

ln vℓ − ln cn
− ln(1− λF̄h(s∗))

,
n

2

)
. (B.6)

(If cn = 0, we understand the minimum to equal n/2.) The motivation for this

obscure choice of jn will reveal itself in the final step of the proof. For the moment,

we only note that n− 1 ≥ jn holds, and that jn and n− jn both go to infinity as n

goes to infinity.

For arbitrary n, we may appeal to Lemma B.2 with jn in the role of j to assert

the following:

Claim B.4. For all n, there exists a strategy µn in Σn,jn,s∗, a belief π∅
n, and a sequence

{µn,k}k∈N in ∆(Σn,jn,s∗) such that all of the following are true:

(1) We have

µn ∈ argmax
µ′∈∆(Σn,jn,s∗ )

V ∅(µ′, π∅
n,jn , n, c). (B.7)

(2) For all k, the strategy µn,k is completely mixed, i.e. the sets Sn(µn,k) and S are

equal.

(3) The sequence (µn,k)k∈N converges to µn as k → ∞.

(4) The sequence of induced beliefs (π̂∅
n(·, µn,k))k converges to π∅

n as k → ∞.

39



In what follows, we understand that for all n, the tuple (µn, π
∅
n, {µn,k}k∈N) is as

in the conclusion of Equation (B.7). We will prove that the sequence {µn, π
∅
n, jn}n∈N

satisfies all desired properties.

As a first step, we use Lemma B.3 to characterize the beliefs π∅
n. Note that

Lemma B.3 is silent on the beliefs at off-path cutoffs. We will make use of the fact

that, by construction, µn and π∅
n are well-approximated by µn,k and π̂∅

n(µn,k), respec-

tively. Since µn,k is completely mixed, we may then use Lemma B.3 to characterize

the beliefs at all cutoffs.

Claim B.5. For all ε > 0 there exists nε ∈ N such that for all n greater than nε all

of the following are true:

(1) If s is in S \ {s∗}, then π̂∅
n(s, µn) < ε holds.

(2) We have ∣∣∣∣π̂∅
n(s

∗, µn)− π0
F̄ℓ(s

∗)

F̄h(s∗)

∣∣∣∣ < ε.

Proof Claim B.5. Let ε > 0. Part 4. of Claim B.4 implies that for all n we may find

kn such that |π̂∅(s, µn,kn)− π∅
n(s)| < ε/2 holds for all s ∈ S. For later reference, note

that µn,kn is fully mixed.

Consider the sequence {µn,kn}n∈N thus defined. Since jn diverges to ∞, we may

appeal to Lemma B.3 to find an integer nε such that for all n above nε all of the

following are true:

(1) If s is in Sn(µn,kn) \ {s∗}, then π̂∅(s, µn,kn) < ε/2.

(2) We have ∣∣∣∣π̂∅(s∗, µn,kn)− π0
F̄ℓ(s

∗)

F̄h(s∗)

∣∣∣∣ < ε/2.

Since µn,kn is fully mixed, the sets Sn(µn,kn) and S are equal. We also recall that the

inequality

|π̂∅(s, µn,kn)− π∅
n(s)| < ε/2

holds for all s ∈ S. The claim follows from the above inequalities.

The previous step allows an easy comparison of the prices that the seller can

hope to obtain under π∅
n. To keep some of more algebraic steps readable, we simplify
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notation. For all s ∈ S let

un(s) = v̂(s, π∅
n(s))

denote the price that the seller would obtain from trading at a cutoff of s when beliefs

are π∅
n. An immediate implication of Claim B.5 is that un(s) converges to vℓ for all

s different from s∗. Moreover, we have

un(s
∗)

n→∞−−−→ 1

π0
fh(s∗)
fℓ(s∗)

F̄ℓ(s∗)
F̄h(s∗)

+ 1

(
vhπ0

fh(s
∗)

fℓ(s∗)

F̄ℓ(s
∗)

F̄h(s∗)
+ vℓ

)
.

In particular, for all sufficiently large values of n and all s different from s∗, we may

assert that un(s
∗)−un(s) is positive and bounded away from zero. These inequalities

and the limit for un(s
∗) are the only properties of π∅

n that will be relevant in the

remainder of the proof.

In what follows, if σn in Sn is some pure strategy for some n, then σn,i means the

i’th entry of σn, i.e. the seller’s action in period i.

Claim B.6. There exists n∗ ∈ N such that for all n greater than n∗, if σnsatisfies

σ ∈ argmax
σ′∈Sn

V ∅(σ′, π∅
n, n, cn),

then the following is true: For all i and i′, if σn,i = s∗ and i′ < i, then σn,i′ = s∗.

In other words, eventually, every pure best response to π∅
n will admit a cutoff-

structure: If s∗ is played, then it is played up to some integer-cutoff, and never

afterwards. (This integer-cutoff may be different for each best response. The cutoff

may also equal n, in which case the strategy plays s∗ in all periods.)

Proof Claim B.6. Recall that un(s
∗)− un(s) is positive and bounded away from zero

for all sufficiently large values of n and all s ∈ S \ {s∗}. Recall also that cn converges

to zero. Hence we may find an integer n∗ such if n is greater than n∗ and s is in

S \ {s∗}, then for all ω the inequality

un(s
∗)− un(s) >

cn
λ
¯
Fω(s

∗)−
¯
Fω(s)

F̄ω(s)F̄ω(s∗)

holds.
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Fix an integer n greater than n∗, and let σ be in ∈ argmax
σ′∈Sn

V ∅(σ′, π∅
n, n, cn).

Towards a contradiction, suppose the claim was false. Then there exists an index i

satisfying σn,i+1 = s∗ and σn,i ̸= s∗. Let vi+2,ω denote the seller’s expected payoff

from period i + 2 onwards under σ, conditional on state ω. Conditional on state ω,

her expected payoff from period i onwards under σ is thus given by

un(σn,i)λF̄ω(σn,i)

+
(
un(s

∗)λF̄ω(s
∗)− cn

) (
1− λF̄ω(σn,i)

)
+vi+2,ω

(
1− λF̄ω(σn,i)

) (
1− λF̄ω(s

∗)
)
.

(B.8)

Consider the strategy σ′ in which the seller picks s∗ in period i, picks s in period i+1,

and otherwise acts as under σ. The contribution of periods before i as well as the

probability of reaching period i under σ′ is clearly the same as under σ. Conditional

on period i being reached in state ω, the probability that period i+2 is reached under

σ′ is
(
1− λF̄ω(s

∗)
) (

1− λF̄ω(σn,i)
)
; this is the same as under σ. The continuation

vi+2,ω from period i+2 onwards in state ω is also unchanged by the deviation since her

behaviour in periods i+2 onwards does not change. Thus we may evaluate the profit

from the deviation in state ω by comparing the expression in (B.8) to the following:

un(s
∗)λF̄ω(s

∗)

+
(
un(σn,i)λF̄ω(σn,i)− cn

) (
1− λF̄ω(s

∗)
)

+vi+2,ω

(
1− λF̄ω(s

∗)
) (

1− λF̄ω(σn,i)
)
.

(B.9)

The deviation to σ′ is profitable if (B.9) is strictly larger than (B.8). By rearranging,

we find that deviation is profitable in state ω if and only if

un(s
∗)− un(σn,i) >

cn
λ
¯
Fω(s

∗)−
¯
Fω(σn,i)

F̄ω(σn,i)F̄ω(s∗)

holds. This inequality is implied by our choice of n∗ and the assumption that σn,i is

a cutoff different from s∗. Thus the deviation to σ′ is profitable in both states of the

world, and so we have a contradiction to the fact that σ is a best response to π∅
n.

Claim B.7. There exists an integer n∗∗ such that if n ≥ n∗∗, then (µn, π
∅
n) is a

sequential equilibrium of V ∅(n, cn).
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Proof Claim B.7. Recalling the construction of (µn, π
∅
n) in Claim B.4, it suffices to

verify that µn is a best response to π∅
n for all but finitely many n. Towards a contra-

diction, suppose not. Then there is a subsequence such that for each of its members

there exists a profitable deviation from µn. By possibly relabelling, let this subse-

quence be the sequence itself. The expected utility of the seller is a linear function

of her mixed strategy. Thus the assumption implies that for all n there exists a pure

strategy σn such that

V ∅(σn, π
∅
n, n, cn) = max

σ′′∈Sn
V ∅(σ′′, π∅

n, n, cn)

>V ∅(µn, π
∅
n, n, cn).

(B.10)

(The maximum is attained since Sn is finite.)

Let n∗ be as in Claim B.6. For integers n above n∗, we infer that there must exist

in in {0, . . . , n} such that for all i ∈ {1, . . . , n} the following equivalence holds:

σn,i = s∗ ⇔ i ≤ in. (B.11)

That is, the strategy σ plays s∗ exactly up to some last period in, possibly never. In

particular, we conclude that σn belongs to the set Σn,in,s∗ .

Recall our construction of (µn, π
∅
n). In particular, according to (B.7), we have

V ∅(µn, π
∅
n, n, cn) = sup

σ′′∈Σn,jn,s∗
V ∅(σ′′, π∅

n, n, cn). (B.12)

Note that Σn,jn,s∗ contains Σn,i,s∗ whenever i is an integer greater than jn; for Σn,i,s∗

contains exactly those pure strategies which play s∗ for at least i periods, whereas

the set Σn,jn,s∗ contains those strategies which play s∗ for at least jn periods. We

have already argued that σn is in Σn,in,s∗ . We therefore conclude from (B.10) that,

for all n, the integer in from (B.11) is less than jn.

Consider the pure strategy σ∗
n = (s∗, . . . , s∗), i.e. the strategy that constantly

plays s∗. Note that σ∗
n is in Σn,jn,s∗ , so that (B.12) implies

V ∅(µn, π
∅
n, n, cn) ≥ V ∅(σ∗

n, π
∅
n, n, cn). (B.13)

Using the inequality in ≤ jn, we shall argue that for sufficiently large values of n we
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have

V ∅(σ∗
n, π

∅
n, n, cn) > V ∅(σn, π

∅
n, n, cn);

in light of (B.10) and (B.13), this yields a contradiction.

Consider the expected utility from σ∗
n, first. It is given by

un(s
∗)
∑

ω∈{ℓ,h}

n∑
i=1

αωλF̄ω(s
∗)
(
1− λF̄ω(s

∗)
)i−1

−λcn
∑

ω∈{ℓ,h}

n∑
i=1

αω

(
1− λF̄ω(s

∗)
)i−1

= un(s
∗)
∑

ω∈{ℓ,h}

αω

(
1−

(
1− λF̄ω(s

∗)
)n)

−cn
∑

ω∈{ℓ,h}

αω

1−
(
1− λF̄ω(s

∗)
)n

F̄ω(s∗)
.

(B.14)

Now consider the expected utility from σn. We recall that σn selects s∗ exactly up

to some period in, where in ≤ jn. By ignoring solicitation costs, we obtain an upper

bound on the expected utility from σn. Verbally, a further upper bound is obtained

in the following hypothetical scenario: If the seller does not trade within in periods,
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she gets a price of max
s∈S\{s∗}

(un(s)) as soon she reaches period in + 1. Formally,

V ∅(σn, π
∅
n, n, cn)

=un(s
∗)
∑

ω∈{ℓ,h}

in∑
i=1

αωλF̄ω(s
∗)
(
1− λF̄ω(s

∗)
)i−1

+ max
s∈S\{s∗}

(un(s))
∑

ω∈{ℓ,h}

(
αω

(
1− λF̄ω(s

∗)
)in

×
n∑

i=in+1

λF̄ω(σn,i)
i−1∏

j=in+1

(
1− λF̄ω(σn,j)

))
≤un(s

∗)
∑

ω∈{ℓ,h}

αω

(
1−

(
1− λF̄ω(s

∗)
)in)

+ max
s∈S\{s∗}

(un(s))
∑

ω∈{ℓ,h}

αω

(
1− λF̄ω(s

∗)
)in

=un(s
∗)
∑

ω∈{ℓ,h}

αω

(
1−

(
1− λF̄ω(s

∗)
)in)

+ max
s∈S\{s∗}

(un(s))
∑

ω∈{ℓ,h}

αω

(
1− λF̄ω(s

∗)
)in

=un(s
∗) +

(
max

s∈S\{s∗}
(un(s))− un(s

∗)

) ∑
ω∈{ℓ,h}

αω

(
1− λF̄ω(s

∗)
)in

. (B.15)

We complete the argument by showing that (B.14) is greater than (B.15) for suffi-

ciently large n. The difference (B.14) minus (B.15) is given by

un(s
∗)
∑

ω∈{ℓ,h}

αω

(
1−

(
1− λF̄ω(s

∗)
)n)− cn

∑
ω∈{ℓ,h}

αω

1−
(
1− λF̄ω(s

∗)
)n

F̄ω(s∗)

− un(s
∗)−

(
max

s∈S\{s∗}
(un(s))− un(s

∗)

) ∑
ω∈{ℓ,h}

αω

(
1− λF̄ω(s

∗)
)in

=
∑

ω∈{ℓ,h}

αω

(
1− λF̄ω(s

∗)
)in(

un(s
∗)− max

s∈S\{s∗}
(un(s))−

1

F̄ω(s∗)

cn(
1− λF̄ω(s∗)

)in
−
(
1− λF̄ω(s

∗)
)n−in

(
un(s

∗)− cn
F̄ω(s∗)

))

We know that n− in is greater than n− jn, and we know that the latter diverges as
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n → ∞. Hence, for all ω, the term

(
1− λF̄ω(s

∗)
)n−in

(
un(s

∗)− cn
F̄ω(s∗)

)
converges to 0 as n → ∞. We also recall that un(s

∗)− max
s∈S\{s∗}

is positive and bounded

away from 0 as n → ∞. To prove that (B.14) minus (B.15) is strictly positive for

sufficiently large n, it therefore suffices to show that

cn(
1− λF̄ω(s∗)

)in
converges to 0 as n → ∞. Again using that in is less than jn, it suffices to check that

cn(
1− λF̄ω(s∗)

)jn (B.16)

converges to zero. Recall that definition of jn as

jn = min

(
1

2

ln vℓ − ln cn
− ln(1− λF̄h(s∗))

,
n

2

)
where we understand the minimum to be n/2 if cn = 0. Therefore,

cn(
1− λF̄ω(s∗)

)jn ≤ c1/2n v
1/2
ℓ .

Since cn → 0 as n → ∞, we conclude that (B.16) converges to 0, as promised.

In view of Claim B.7, the next claim completes the proof.

Claim B.8. All of the following are true:

(1) For all n ∈ N, we have µn{σ ∈ Sn : (σ1, . . . , σjn) = (s∗, . . . , s∗)} = 1.

(2) The sequence {jn}n∈N diverges to ∞.

(3) Along the sequence (µn, πn), the good is traded with probability converging to

1. The seller’s expected utility and the price at which the good is traded converge

almost surely to

vℓ + (vh − vℓ)
π fh(s

∗)
fℓ(s∗)

F̄ℓ(s
∗)

F̄h(s∗)

π fh(s∗)
fℓ(s∗)

F̄ℓ(s∗)
F̄h(s∗)

+ 1
. (B.17)

46



Proof of Claim B.8. Part (1) is immediate from the fact that µn is in Σn,jn,s∗ . Part

(2) follows from the definition of jn. Turning to part (3), note that the good is traded

at a price of un(s
∗) whenever at least one of the first jn buyers who arrives to the

market has a signal equal to s∗. Conditional on state ω, the probability of this event

is (1− λfω(s
∗))jn . Since un(s

∗) converges to (B.17), we conclude from here that good

is traded with probability converging to 1, and that the realized price conditional

on trade converges almost surely to (B.17). It is clear that the seller’s expected

solicitation costs converge to 0, and hence the seller’s expected utiltiy also converges

to (B.17).

B.4 Surplus extraction with binary signals

Proof of Proposition 3.3. Let σ̄n denote the pure strategy that plays s̄ in all periods.

Given a strategy σn in Sn, we denote its i’th entry by σn,i.

Given n ∈ N and m ∈ {0, . . . , n}, let σ
(m)
n be the strategy which plays s̄ in all

rounds up to and including round m, and which plays
¯
s in all later rounds. Let us

also abbreviate x̄ω = 1− λfω(s̄).

Claim B.9. For all m ∈ {0, . . . , n} we have π̂∅
n(s̄, σ

(m)
n ) ≥ π̂∅

n(s̄, σ̄n).

Proof Claim B.9. We will show that π̂∅
n(s̄, σ

(m)
n ) ≥ π̂∅

n(s̄, σ
(m+1)
n ) holds for arbitrary

m ∈ {1, . . . , n− 1}. This proves the claim since the strategy σ(n) is just the strategy

σ̄n.
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The difference π̂∅
n(s̄, σ

(m)
n )− π̂∅

n(s̄, σ
(m+1)
n ) is given by

π0

n∑
i=1

1
(σ

(m)
n,i =s̄)

i−1∏
j=1

(
1− λF̄h(σ

(m)
n,j )

)
n∑

i=1

1
(σ

(m)
n,i =s̄)

i−1∏
j=1

(
1− λF̄ℓ(σ

(m)
n,j )

) − π0

n∑
i=1

1
(σ

(m+1)
n,i =s̄)

i−1∏
j=1

(
1− λF̄h(σ

(m+1)
n,j )

)
n∑

i=1

1
(σ

(m+1)
n,i =s̄)

i−1∏
j=1

(
1− λF̄ℓ(σ

(m+1)
n,j )

)

=π0

m∑
i=1

i−1∏
j=1

(
1− λF̄h(σ

(m)
n,j )

)
m∑
i=1

i−1∏
j=1

(
1− λF̄ℓ(σ

(m)
n,j )

) − π0

m+1∑
i=1

i−1∏
j=1

(
1− λF̄h(σ

(m+1)
n,j )

)
m+1∑
i=1

i−1∏
j=1

(
1− λF̄ℓ(σ

(m+1)
n,j )

)

=π0

m∑
i=1

(1− λfh(s̄))
i

m∑
i=1

(1− λfh(s̄))i
− π0

m+1∑
i=1

(1− λfh(s̄))
i

m+1∑
i=1

(1− λfh(s̄))i

=π0

m∑
i=1

x̄i
h

m∑
i=1

x̄i
ℓ

− π0

m+1∑
i=1

x̄i
h

m+1∑
i=1

x̄i
ℓ

.

The sign of this difference is thus the sign of(
m∑
i=1

x̄i
h

)(
x̄m+1
ℓ +

m∑
i=1

x̄i
ℓ

)
−

(
m∑
i=1

x̄i
ℓ

)(
x̄m+1
h +

m∑
i=1

x̄i
h

)

=
m∑
i=1

(
x̄i
hx̄

m+1
ℓ − x̄i

ℓx̄
m+1
h

)
.

The claim now follows from the fact that x̄ℓ = 1−λfℓ(s̄) > 1−λfh(s̄) = x̄h holds.

Claim B.10. Let m ∈ {1, . . . , n}. Let σ ∈ Sn. If σn is a permutation of σ
(m)
n , then

π̂∅
n(s̄, σn) ≥ π̂∅

n(s̄, σ
(m)
n ).

Proof Claim B.10. For k ∈ {1, . . .m}, let ιk(σn) denote the label of the round in

which σn plays s̄ for the k’th time.18 Defining ιk(σ
(m)
n ) analogously, notice that we

have ιk(σ
(m)
n ) = k.

18That is, ι1(σn) = min{i ∈ {1, . . . , n} : σn,i = s̄}. The remaining indices are defined inductively
via ιk(σn) = min{i ∈ {ιk−1(σn) + 1, . . . , n} : σn,i = s̄}.
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Given a state ω, consider the sum

n∑
i=1

1(σn,i=s̄)

i−1∏
j=1

(1− λ(1−
¯
Fω(σn,i))) . (B.18)

The i’th summand is non-zero only if there is some k such that i = ιk(σn) holds. In

that case, the definition of ιk(σn) implies the following: Over the course of rounds

{1, . . . , ιk(σn) − 1}, the strategy σn plays s̄ exactly k − 1 times, and
¯
s otherwise.

Hence we have

i−1∏
j=1

(1− λ(1−
¯
Fω(σn,i)))

=(1− λ(1−
¯
Fω(

¯
s)))ιk(σn)−1−(k−1)(1− λ(1−

¯
Fω(s̄)))

k−1

(1− λ)ιk(σn)−1−(k−1)(1− λfω(s̄))
k−1

=(1− λ)ιk(σn)−1−(k−1)x̄k−1
ω .

The sum in (B.18) thus equals

m∑
k=1

(1− λ)ιk(σn)−kx̄k−1
ω .

A similar expression can be derived for σ
(m)
n , with the only change being that we

have ιk(σ
(m)
n ) = k for all k. The difference π̂∅

n(s̄, σn)− π̂∅
n(s̄, σ

(m)
n ) thus reads

π0

m∑
k=1

(1− λ)ιk(σn)−kx̄k−1
h

m∑
k=1

(1− λ)ιk(σn)−kx̄k−1
ℓ

− π0

m∑
k=1

(1− λ)ιk(σ
(m)
n )−kx̄k−1

h

m∑
k=1

(1− λ)ιk(σ
(m)
n )−kx̄k−1

ℓ

=π0

m∑
k=1

(1− λ)ιk(σn)−kx̄k−1
h

m∑
k=1

(1− λ)ιk(σn)−kx̄k−1
ℓ

− π0

m∑
k=1

x̄k−1
h

m∑
k=1

x̄k−1
ℓ

.
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The sign of this difference is the sign of

m∑
k=1

m∑
k′=1

(
(1− λ)ιk(σn)−kx̄k−1

h x̄k′−1
ℓ − (1− λ)ιk(σn)−kx̄k−1

ℓ x̄k′−1
h

)
=

∑
k,k′ : k>k′

(
(1− λ)ιk(σn)−kx̄k−1

h x̄k′−1
ℓ − (1− λ)ιk(σn)−kx̄k−1

ℓ x̄k′−1
h

+ (1− λ)ιk′ (σn)−k′x̄k′−1
h x̄k−1

ℓ − (1− λ)ιk′ (σn)−k′x̄k′−1
ℓ x̄k−1

h

)
=

∑
k,k′ : k>k′

(
(1− λ)ιk(σn)−k − (1− λ)ιk′ (σn)−k′

)(
x̄k−1
h x̄k′−1

ℓ − x̄k−1
ℓ x̄k′−1

h

)
To complete the proof, we argue that each of the summands in the last expression is

weakly positive.

First, recall that ιk(σn) denotes the label of the round in which σn plays s̄ for

k’th time, whereas ιk′(σn) denotes label of the round with the (k′)’th occurence. This

means that at least k−k′ rounds must pass between the two rounds. Formally, we have

ιk(σn)− ιk′(σn) ≥ k−k′. This inequality implies that (1−λ)ιk(σn)−k− (1−λ)ιk′ (σn)−k′

is negative.

Second, notice that 1 − λfℓ(s̄) = x̄ℓ > x̄h = 1 − λfh(s̄) holds. Given that the

summands consider k and k′ such that k > k′ holds, we conclude that x̄k−1
h x̄k′−1

ℓ −
x̄k−1
ℓ x̄k′−1

h is negative.

The previous two paragraphs imply that(
(1− λ)ιk(σn)−k − (1− λ)ιk′ (σn)−k′

)(
x̄k−1
h x̄k′−1

ℓ − x̄k−1
ℓ x̄k′−1

h

)
is weakly positive, which yields the desired conclusion.

Claim B.11. If µ′
n ∈ ∆(Sn) is a mixed strategy that plays s̄ with non-zero probability,

then π̂∅
n(s̄, µ

′
n) is well-defined and we have π̂∅

n(s̄, µ
′
n) ≥ π̂∅

n(s̄, σ̄n).

Proof of Claim B.11. For a pure strategy σn, a state ω and an integer i, let us ab-

breviate δω(i, σn) =
i−1∏
j=1

(
1− λF̄ω(σn,j)

)
. In this notation, the sign of the difference
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π̂∅
n(s̄, µ

′
n)− π̂∅

n(s̄, σ̄n) is

sgn


∑

σ∈Sn

n∑
i=1

1(σn,i=s̄)µ
′
n(σn)δh(i, σn)∑

σ∈Sn

n∑
i=1

1(σn,i=s̄)µ′
n(σn)δℓ(i, σn)

−

n∑
i=1

δh(i, σ̄n)

n∑
i=1

δℓ(i, σ̄n)


= sgn

( ∑
σ∈Sn

µ′
n(σn)

((
n∑

i=1

1(σn,i=s̄)δh(i, σn)

)(
n∑

i=1

δℓ(i, σ̄n)

)

−

(
n∑

i=1

1(σn,i=s̄)δℓ(i, σn)

)(
n∑

i=1

δh(i, σ̄n)

)))
.

Hence it suffices to show that, for arbitrary σn, the difference(
n∑

i=1

1(σn,i=s̄)δh(i, σn)

)(
n∑

i=1

δℓ(i, σ̄n)

)
−

(
n∑

i=1

1(σn,i=s̄)δℓ(i, σn)

)(
n∑

i=1

δh(i, σ̄n)

)

is weakly positive. There is nothing to prove if σn never plays s̄. If σn plays s̄ at least

once, then the sign of this difference is precisely the sign of

π̂∅
n(s̄, σn)− π̂∅

n(s̄, σ̄n).

A strategy σn which plays s̄ a total of, say, m times is a permutation of the strategy

σ
(m)
n . Thus Claims B.9 and B.10 imply π̂∅

n(s̄, σn) ≥ π̂∅
n(s̄, σ

(m)
n ) ≥ π̂∅

n(s̄, σ̄n). In

particular, π̂∅
n(s̄, σn)− π̂∅

n(s̄, σ̄n) is weakly positive, as promised.

Claim B.12. The seller’s equilibrium expected utility converges to v̂0

Proof of Claim B.12. Recall that, for all n, the pair (µn, π
∅
n) is a sequential equilib-

rium. Claim B.11 therefore implies that π∅
n(s̄) ≥ π̂∅

n(s̄, σ̄n) holds for all n. It follows
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that the deviation to σ̄n yields an expected utility of at least

n∑
i=1

∑
ω∈{ℓ,h}

αω

(
i−1∏
j=1

(
1− λF̄ω(σn,j)

)) (
λfω(s̄)v̂(s̄, π̂

∅
n(s̄, σ̄n))− cn

)
=

n∑
i=1

∑
ω∈{ℓ,h}

αω (1− λfω(s̄))
i−1 (λfω(s̄)v̂(s̄, π̂∅

n(s̄, σ̄n))− cn
)

=v̂(s̄, π̂∅
n(s̄, σ̄n))

∑
ω∈{ℓ,h}

αω (1− (1− λfω(s̄))
n)− cn

∑
ω∈{ℓ,h}

αω
1− (1− λfω(s̄))

n

fω(s̄)

We know from Lemma B.3 that π̂∅
n(s̄, σ̄n) converges to fℓ(s̄)/fh(s̄). Hence the expres-

sion in the previous line converges to v̂(s̄, π0fℓ(s̄)/fh(s̄)) as n → ∞. This expectation

equals v̂0. Thus we have shown that equilibrium utility admits a lower bound which

converges to v̂0. But we also know from Lemma B.1 that equilibrium expected utility

is bounded above by v̂0, and hence we arrive at the desired conclusion.
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