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Abstract

An object is allocated among a number of agents. The optimal alloca-

tion depends on the agents’ information about their peers, but each agent

wants the object for themself. Monetary transfers are unavailable. We con-

sider mechanisms where it is a dominant strategy to report truthfully. We show

that deterministic mechanisms do not generally suffice for implementation and

optimality, and that anonymous mechanisms cannot meaningfully elicit infor-

mation. However, there are simple mechanisms—jury mechanisms—that are

optimal when there are three or fewer agents, approximately optimal in sym-

metric environments with many agents, and the only deterministic mechanisms

satisfying a relaxed anonymity notion. In a jury mechanism, each agent is ei-

ther a juror or a candidate. The jurors decide which candidate wins the object,

but jurors never win.

∗We thank Kailin Chen, Gregorio Curello, Günnur Ege Destan, Francesc Dilmé, Deniz Kat-
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1 Introduction

We consider environments where an object is allocated among a number of agents.

The efficient allocation depends on how the agents evaluate their peers, but monetary

transfers are not used to elicit this information. A number of environments fit this

description:

(1) A group has to elect one of its members to a prestigious post. The group as

whole benefits from selecting a qualified candidate, and each agent knows the

qualities of their friends in the group. Monetary transfers would naturally be

excluded in such an election.

(2) A community of households has to distribute a good among its members. Each

member can vouch for the needs and valuations of their friends or neighbors. If

some members are financially constrained, it may be infeasible or undesirable

to have members compete for the good via bids.

(3) A funding agency splits a budget across researchers. Each researcher can eval-

uate others in their field. If all parties are risk neutral, the allocated share of

the budget can be interpreted as the probability of being allocated the object.

Additional monetary transfers would be self-defeating.

In these environments, asking the agents straightforwardly who “should” get the

object does not guarantee satisfactory outcomes. In particular, if agents are primarily

concerned with their own winning chances, they may exaggerate their individual

qualities instead of impartially disclosing their peer information.

To better understand good allocation rules, we take a mechanism design approach

and consider the following model. Each agent wants to win the object and is indif-

ferent to which of the others wins. Allocating to an agent generates a social value.

The agents have private information about these values—their types. We model peer

information by allowing for an arbitrary joint distribution of types and values. Hence

an agent’s type may be informative about the types and values of all others.

We study mechanisms for maximizing the expected value of the allocation. In a

mechanism, each agent is asked to report their type. We focus on mechanisms where

truthfully reporting one’s type is a dominant strategy; that is, we focus on dominant-

strategy incentive-compatible (DIC) mechanisms. For the assumed preferences of the

agents, DIC requires that one’s report never influences one’s own winning probability.

Let us highlight some of the differences to existing models (a detailed review
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follows later). Alon et al. (2011) and Holzman and Moulin (2013) consider DIC

mechanisms (there called strategyproof or impartial) where the agents nominate one

another to win the object. These nominations do not arise from some ground truth.

By contrast, we fix a general joint distribution of types and values. This lets us study

mechanisms where, say, two agents can share their private information and form a

consensus about which of the others to nominate. Other work considers settings

where non-monetary instruments for screening the agents are available, but where

the agents have no peer information (for example, Ben-Porath et al., 2014, 2019).

We contribute two results demonstrating the difficulty of designing “simple” mech-

anisms for this problem: deterministic DIC mechanisms are not without loss, and

anonymous DIC mechanism cannot meaningfully elicit information. We further con-

tribute three positive results on so-called jury mechanisms. These mechanisms, de-

scribed in detail below, solve the problem with three agents, are approximately op-

timal in symmetric environments with many agents, and are the only deterministic

DIC mechanisms satisfying a relaxed notion of anonymity. Let us elaborate.

For each agent, there is a trade-off between allocating to the agent and using the

agent’s peer information. This trade-off arises since, on the one hand, DIC demands

that a change in an agent’s type does not affect that agent’s own winning probability,

but, on the other hand, the change in the type reveals information about the values

from allocating to the others.

Optimally resolving this trade-off may require the use of stochastic mechanisms

that cannot be implemented by randomizing over deterministic ones. That is, the set

of DIC mechanisms may admit stochastic extreme points, and these can be uniquely

optimal. Stochastic extreme points exist if and only if there are at least four agents

and the type spaces are not “too small.” The typical view in the literature is that one

should use mechanisms that can be implemented by randomizing over deterministic

ones (for example, Chen et al., 2019; Pycia and Ünver, 2015). We find that doing so

is not generally without loss in the present problem.

Our next result is that all anonymous DIC mechanisms must ignore the reports

of the agents. Here, anonymity means that all agents can make the same reports and

that an agent’s winning probability does not change when one permutes the reports

of the others. We view anonymity as the familiar axiom from social choice theory

that no agent play a special role in determining the chosen social alternative; that is,

in determining who wins the object. As such, anonymity helps reduce the complexity
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of the mechanism, protects agents’ privacy when evaluating their peers, and ensures

that agents have the same rights as voters. Our negative result also sheds new light

on a characterization due to Holzman and Moulin (2013) and Mackenzie (2015) of a

slightly different notion of anonymity.

Our positive results concern the following class of mechanisms. In a jury mecha-

nism, each agent is either a juror or a candidate. The allocation only depends on the

reports of the jurors, and the object is always allocated to a candidate. Given that

jurors cannot win, all jury mechanisms are DIC.

If there are three agents, then all DIC mechanisms are randomizations over deter-

ministic jury mechanisms. In particular, a deterministic jury mechanism is optimal.

This generalizes a known result for deterministic DIC mechanisms due to Holzman

and Moulin (2013). Our key insight is that in the three-agent case all DIC mecha-

nisms are actually randomizations over deterministic ones.

Next, we identify a condition on the environment under which deterministic jury

mechanisms are approximately optimal with many agents. By “approximately opti-

mal” we mean that the difference in expected values between an optimal deterministic

jury mechanism and an optimal DIC mechanism vanishes as the number of agents

diverges. The condition on the environment is that agents are exchangeable in terms

of supplying information about the vector of values. Intuitively, when agents are

exchangeable, increasing their number relaxes the aforementioned trade-off. In par-

ticular, there is essentially no loss from ignoring the reports of those agents who are

sometimes allocated the object—this is the defining property of a jury mechanism.

For the last result, we consider a relaxed notion of anonymity—partial anonymity.

Whereas the earlier notion of anonymity demands that an agent’s winning probability

be invariant with respect to all permutations of the others, partial anonymity only

considers permutations of those agents that in the given mechanism actually influence

the agent’s winning probability. We show that all deterministic partially anonymous

DIC mechanism are jury mechanisms.

The paper is organized as follows. We next discuss related work (Section 2) and

present the model (Section 3). In Section 4, we introduce jury mechanisms and

present the results for the three- and many-agent cases. In Section 5, we characterize

when stochastic extreme points exist. In Section 6, we study anonymous mecha-

nisms, presenting the two notions and the associated characterizations side-by-side.

We conclude by discussing open questions (Section 7). All omitted proofs are in
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Appendix A. Supplementary material is collected in Appendices B and C.

2 Related literature

Holzman and Moulin (2013) study axioms for peer nomination rules. In such a rule,

agents nominate one another to receive a prize. Their central axiom—impartiality—

is equivalent to DIC when each agent cares only about their own winning probability.

As Holzman and Moulin note, many of their axioms have no obvious counterparts in

a model with abstract types. Most relevant for us is their notion and characterization

of anonymity, as well subsequent results due to Mackenzie (2015, 2020). We discuss

the differences to our characterization in detail in Section 6.4.1

Alon et al. (2011) initiated a literature on optimal DIC mechanisms (there called

strategyproof mechanisms) in a model where each agent nominates a subset of the

others, and the aim is to select an agent nominated by many. Mechanisms are

ranked according to approximation ratios2 rather than according to expected values,

and this leads to qualitatively different optimal mechanisms. For example, while

jury mechanisms can be optimal in our model, the 2-partition mechanism of Alon

et al. (2011), which is a natural analogue of jury mechanisms, is not optimal in their

model.3,4

See Olckers and Walsh (2022) for a survey of the literature following Holzman

and Moulin (2013) and Alon et al. (2011). Olckers and Walsh also report on some

related empirical studies.

Other work in mechanism design focuses on non-monetary instruments for eliciting

information For example, in the aforementioned paper of Ben-Porath et al. (2014),

1Further contributions to the literature following Holzman and Moulin (2013) include Edelman
and Por (2021), Tamura (2016), and Tamura and Ohseto (2014). See also de Clippel et al. (2008).

2Given α ∈ [0, 1], a mechanism has an approximation ratio of α if it guarantees a fraction α of
some benchmark value. The guarantee is computed across all realizations of the type profile; that
is, across all possible approval sets. The benchmark value at a particular realization is the maximal
number of approvals across agents.

3The 2-partition mechanism randomly splits the agents into two subsets, and then selects an
agent from the first subset with the most approvals from agents in the second subset. Alon et al.
(2011, Theorem 4.1) show that the 2-partition mechanism has an approximation ratio of 1

4 . Fischer
and Klimm (2015) present a mechanism that achieves the strictly higher and optimal ratio of 1

2 .
4Further contributions to this literature include Aziz et al. (2016, 2019), Bjelde et al. (2017),

Bousquet et al. (2014), Lev et al. (2021), and Mattei et al. (2020). See also Caragiannis et al. (2019,
2021), who consider additive approximations rather than approximation ratios.
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the agents’ types can be verified at a cost.5 The typical assumption in this literature

is that the agents do not have information about their peers. Most relevant for us are

papers that study how a Bayesian incentive-compatible mechanism may use agents’

peer information to incentivize truthtelling (Bloch et al., 2022; Kattwinkel, 2019;

Kattwinkel and Knoepfle, 2021; Kattwinkel et al., 2022). The idea is that when agents

have information about their peers, one can detect lies by cross-checking the agents’

reports. We observe that the dominant-strategy incentive-compatible mechanisms

that we consider do not use peer information in this manner. While DIC thus shuts

down a screening channel, it leads to mechanisms that are far simpler for the agents

to play. Relatedly, the fundamental insights of Crémer and McLean (1985, 1988) and

McAfee and Reny (1992) on mechanisms with transfers do not apply here.

The papers of Baumann (2018) and Bloch and Olckers (2021, 2022) study related

settings but focus on different questions. For instance, Bloch and Olckers (2022)

study whether it is possible to reconstruct the ordinal ranking of agents from their

reports when agents prefer a high rank.

We also contribute to the literature on the gap between stochastic and determin-

istic mechanisms6 by fully characterizing when deterministic DIC mechanisms suffice

for describing the set of DIC mechanisms in the present model. Methodologically,

we show that here the existence of stochastic extreme points can be understood via

a graph-theoretic result due to Chvátal (1975). We elaborate in Appendix B.

3 Model

A single indivisible object is to be allocated to one of n agents, where n ≥ 2. For

each agent i, let Ωi be a finite set of reals representing the possible social values from

allocating to agent i, and let Θi be a finite set representing agent i’s possible private

types. Let Ω = ×n
i=1Ωi and Θ = ×n

i=1Θi. Values and types are distributed according

to a joint distribution µ over Ω × Θ. At all type profiles, agent i strictly prefers

winning the object to not winning it; agent i is indifferent to which of the others is

5See Epitropou and Vohra (2019), Erlanson and Kleiner (2019), and Li (2020) for further work
with costly verification. Other examples of non-monetary instruments include promises of future
allocations (Guo and Hörner, 2021), costly signaling (Chakravarty and Kaplan, 2013; Condorelli,
2012), allocative externalities (Bhaskar and Sadler, 2019; Goldlücke and Tröger, 2020), or ex-post
punishments (Li, 2020; Mylovanov and Zapechelnyuk, 2017).

6See, for example, Budish et al. (2013), Chen et al. (2019), Jarman and Meisner (2017), Pycia
and Ünver (2015), and Rivera Mora (2022).
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allocated the object.

In a (direct) mechanism, each agent reports a type, and then the object is allocated

to one of the agents according to some lottery. Formally, a mechanism is a function

φ : Θ → [0, 1]n satisfying
∑n

i=1 φi = 1. Here φi : Θ → [0, 1] denotes the winning

probability of agent i. Since the object is allocated to one of the agents, these

probabilities sum to 1. The requirement that the object is always allocated keeps

with some earlier work (for example, Alon et al. (2011) and Holzman and Moulin

(2013)). In Appendix B, we discuss mechanisms that do not always allocate.

A mechanism φ is dominant-strategy incentive-compatible (DIC) if truthfully re-

porting one’s type is a dominant strategy. For the assumed preferences of the agents,

a mechanism is DIC if and only if one’s report never affects one’s own winning prob-

ability.

To see the previous point in detail, let ui(θ) denote the payoff to an agent i when i

is allocated the object at a type profile θ. We normalize i’s payoff when not allocated

the object to 0, and we assume ui > 0. DIC for a mechanism φ requires that all

i, θi, θ
′
i, θ−i, and θ

′
−i satisfy ui(θi, θ−i)φi(θi, θ

′
−i) ≥ ui(θi, θ−i)φi(θ

′
i, θ

′
−i). Since ui > 0

and since θi and θ
′
i are arbitrary, we must have φi(θi, θ

′
−i) = φi(θ

′
i, θ

′
−i). That is, agent

i’s report never affects φi. Observe that nothing in this argument changes if ui < 0.

Hence we can equally model cases where some agents prefer not to be allocated the

object.

We evaluate a DIC mechanism φ via the expected value of the allocation, which is

given by Eω,θ [
∑n

i=1 φi(θ)ωi]. When we say a DIC mechanism is optimal, we mean it

maximizes the expected value among all DIC mechanisms. The Revelation Principle

implies that DIC mechanisms are without loss: if a mechanism can be implemented

in some dominant-strategy equilibrium of some game, then it is DIC.

Lastly, we define the following: A mechanism is deterministic if it maps to a

subset of {0, 1}n. A mechanism is stochastic if it is not deterministic.

4 Jury mechanisms

In this section, we focus on the following class of mechanisms.

Definition 1. A mechanism φ is a jury mechanism if for all agents i we have the

following: if the mechanism is non-constant in agent i’s report, then agent i never

wins, meaning φi = 0.
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Given a jury mechanism, we refer to an agent as a juror if the mechanism is

non-constant in their report. The set of jurors is called the jury, and the remaining

agents are called candidates. All jury mechanisms are DIC since jurors never win.

The most natural jury mechanisms are those that allocate to the top candidate

conditional on the jurors’ reports. That is, when the set of jurors is J and jurors

report types (θi)i∈J , the object is allocated to one of the candidates in

argmax
k∈{1,...,n}\J

Eωk
[ωk|(θi)i∈J ].

Assuming a common prior, this mechanism would be implemented by having the

jurors share their private information via cheap-talk messages, update their beliefs

about the candidates, and then award the object to the top candidate given their

shared posterior belief. (For our proofs, however, it is convenient to allow the jurors

to select a suboptimal candidate.)

A priori, all agents in the model are candidates for winning and suppliers of

information. Jury mechanisms are special since the roles of candidates and jurors

are assigned before the agents are consulted. There are more complicated mecha-

nisms where an agent’s “role” varies across type profiles, and we shall encounter such

mechanisms later. As such, it is remarkable that there are situations where jury

mechanisms are (approximately) optimal, as we discuss next.

4.1 Jury mechanisms solve the three-agent case

Theorem 4.1. Let n ≤ 3. A mechanism is DIC if and only if it is a convex com-

bination of deterministic jury mechanisms. In particular, there is an optimal DIC

mechanism that is a deterministic jury mechanism.

With three agents, a jury mechanism admits at most one juror who deliberates

between the other two. Therefore, all DIC mechanisms with three agents can be

implemented by nominating a juror (according to some distribution over the set of

agents), and then asking the juror to pick one of the others as a winner of the object.

Optimally, the information of at least two of the agents is ignored. (With only two

agents, all DIC mechanisms are constant.)

In the remainder of this subsection, we explain the steps in the proof of Theo-

rem 4.1. We begin with a known result (Holzman and Moulin, 2013, Proposition 2.i).
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Lemma 4.2. If n ≤ 3, then all deterministic DIC mechanisms are jury mechanisms.

In the language of Section 5 of Holzman and Moulin (2013), a deterministic DIC

mechanism is an impartial award rule. Their Proposition 2.i implies that, if n ≤ 3,

then in each impartial award rule there is at most one agent whose report influences

the allocation, and this influential agent never wins. Such a rule is a jury mechanism.7

To the best of our knowledge, Lemma 4.2 has so far been limited to deterministic

DIC mechanisms. We now close the gap to stochastic ones.

Lemma 4.3. If n ≤ 3, then all DIC mechanisms are convex combinations of deter-

ministic DIC mechanisms.

Lemma 4.3 completes the proof of Theorem 4.1. Indeed, Lemmata 4.2 and 4.3

immediately imply that all DIC mechanisms are convex combinations of deterministic

jury mechanisms. Since the expected value is a linear function of the mechanism, at

least one deterministic jury mechanism must be optimal.

To prove Lemma 4.3 we consider the extreme points of the set of DIC mechanisms.

A routine argument shows that the set of DIC mechanisms is convex and compact

(as a subset of Euclidean space). Hence, by the Krein-Milman theorem (Aliprantis

and Border, 2006, Theorem 7.68), the set is given by the convex hull of its extreme

points.

We show that all stochastic DIC mechanisms fail to be extreme points. Specifi-

cally, given an arbitrary stochastic DIC mechanism φ we construct a non-zero function

f such that φ + f and φ − f are two other DIC mechanisms. To understand this

construction, recall that a stochastic mechanism is one where, for at least one type

profile, at least one agent enjoys an interior winning probability. Since the object is

always allocated, some other agent must also enjoy an interior winning probability

at the same profile. The function f represents a shift of a small probability mass

between these two agents. This shift should be consistent with DIC (since we want

φ + f and φ − f to be DIC), and hence we have to shift masses at multiple type

profiles. What makes the construction of f difficult is that changing one agent’s type

may change which of the others enjoys an interior winning probability. Our argument

7Holzman and Moulin (2013) note that the result is essentially due to Kato and Ohseto (2002),
who study pure exchange economics. For a discussion of this relationship, we refer to Section 1.4 of
Holzman and Moulin (2013).
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thus intuitively leans on there only being three agents. Indeed, we shall later see that

the argument does not go through with four or more agents.

4.2 Approximate optimality of jury mechanisms

In this subsection, we identify environments in which jury mechanisms are approxi-

mately optimal if the number n of agents is large. As suggested in the introduction,

DIC creates a tension between allocating to an agent and using the agent’s peer

information. This tension becomes easier to resolve with many agents. Indeed, we

intuit that many DIC mechanisms become approximately optimal as n → ∞. The

insight of the upcoming result is that this includes the DIC mechanisms that resolve

the tension in the most straightforward way—jury mechanisms.

The following example conveys the basic idea.

Example 1. For each agent i, the value ωi of allocating to i depends on some common

component s and some private component ti. Specifically, for some function ω̂i we

have ωi = ω̂i(s, ti) with probability 1. The agents observe their private components,

which are independently and identically distributed across agents and independent of

s. All agents observe s. (So, agent i’s type is θi = (s, ti).) Let φ be an arbitrary DIC

mechanism for these n agents. Now suppose a new agent n + 1, who also observes

the common component s, joins the group. Agent n+1 may observe some additional

information, but this will not be relevant. We claim that there is a jury mechanism

that only uses agent n + 1 as a single juror and that does as well as φ. Note that,

by ignoring the reports of agents 1 to n, the information contained in the public

component s is not lost. The only information that is potentially lost is the first

n agents’ knowledge of their private components t1, . . . , tn. Each agent i’s private

component ti is informative only about i’s own value (by independence). However,

DIC of the original mechanism φ implies that ti could not have been used to determine

i’s own allocation. Thus one does not actually lose any information when ignoring

the reports of agents 1 to n.

The main result of this section generalizes the previous example as follows. Under

an assumption on the distribution of types and values, an arbitrary DIC mechanism

with n agents can be replicated by a jury mechanism when additional agents are

around. If values remain bounded in n, an implication is that the loss from using an

optimal jury mechanism vanishes as n→ ∞.
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We introduce new notation to accommodate the growing number of agents. The

agents share a common finite type space (Θ1 = Θi for all i). The prior distribution of

values and types is now a Borel-probability measure µ on ×i∈N(Ωi ×Θi),where each

Ωi is a finite set of reals.8

The following assumption captures the idea that if i, j, and k are three distinct

agents, then i and j have access to the same sources of information about ωk.

Assumption 1. For all n ∈ N, all i ∈ {1, . . . , n}, and all ωi ∈ Ωi, we have the

following: Conditional on the value of agent i being equal to ωi, the distribution of

(θj)j∈{1,...,n}\{i} is invariant with respect to permutations of {1, . . . , n} \ {i}.

We are not assuming that i and j have the same information as k about ωk. For

example, in Example 1, the common component is the only information that i and j

have about ωk, but agent k actually observes ωk.

When there are n agents (meaning that mechanisms only consult and allocate to

the first n agents), let Vn denote the expected value from an optimal DIC mechanism.

Let V J
n denote the expected value from a jury mechanism with n agents that is optimal

among jury mechanisms with n agents.

Theorem 4.4. Let Assumption 1 hold. For all n ∈ N there exists m ∈ N such that

Vn ≤ V J
n+m. If, additionally, the sequence {Vn}n∈N is bounded,9 then limn→∞(Vn −

V J
n ) = 0.

In plain words, if m new agents are added to the group, a jury mechanism with

n+m agents does as well as an with an arbitrary DIC mechanism with n agents. The

proof shows this claim for a jury mechanism that has the new m agents as jurors, and

the old n agents as candidates, and where m = n. That is, a jury mechanism with

the desired properties exists as soon as the number of agents is doubled. Depending

on the exact distribution µ, a much smaller number of new agents may be needed;

in Example 1, one new agent suffices.

Assumption 1 is stronger than what we really need. It suffices if, informally

speaking, for all groups of agents {1, . . . , n} there eventually comes a disjoint group of

agents that is at least as well informed as {1, . . . , n} about each other. Assumption 2

in Appendix A.1.2 formalizes this idea.

8Each of the finite sets Ωi and Θi is equipped with the discrete metric. The product×i∈N(Ωi×Θi)
is equipped with the product metric.

9A sufficient condition for boundedness of the sequence {Vn}n∈N is that the values ωi are bounded
across agents. For example, suppose with µ-probability 1 we have ωi ∈ [0, 1] for all i ∈ N.
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Remark 4.5. Theorem 4.4 does not assert that DIC mechanisms become approx-

imately ex-post optimal conditional on the type profile. In Example 1, the only

information that is used in the allocation is the common component. The common

component need not pin down the entire profile of values.

5 Random allocations

In this section, we show that it typically does not suffice to consider deterministic

mechanisms. This fact sheds light on the fundamental economic forces of the model

and has practical implications for implementation, as we explain below.

5.1 Stochastic extreme points

One of way constructing a stochastic DIC mechanism is by randomizing over deter-

ministic ones; that is, by taking a convex combination of deterministic DIC mecha-

nisms. In this case, one of the deterministic mechanisms from the combination must

generate a weakly higher expected value than the stochastic mechanism.

We therefore ask whether all stochastic DIC mechanisms can be represented as

convex combinations of deterministic ones; that is, whether all extreme points of the

set of DIC mechanisms are deterministic. In a nutshell, this is true if and only if

there are at most three agents or the agents’ type spaces are small.

Theorem 5.1. All extreme points of the set of DIC mechanisms are deterministic if

and only if at least one of the following is true:

(1) There are at most three agents; that is, we have n ≤ 3.

(2) All agents have at most two types; that is, for all i we have |Θi| ≤ 2.

(3) At least (n− 2)-many agents have a degenerate type; that is, we have

|{i ∈ {1, . . . , n} : |Θi| = 1}| ≥ n− 2.

We already know from Lemma 4.3 that (1) is sufficient for all extreme points to

be deterministic. Sufficiency of (2) is related to a generalization of the well-known

Birkhoff-von Neumann theorem; sufficiency of (3) is economically and technically

uninteresting, but must be included for completeness.10 As for the other direction:

10The reader may wonder whether one can prove sufficiency of (1) to (3) by viewing the set of DIC
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we momentarily give an example of a stochastic extreme point. The general claim that

a stochastic extreme point exists when (1) to (3) all fail follows readily by extending

this example.

An implication of Theorem 5.1 is that deterministic DIC mechanisms do not suffice

for optimality. Indeed, for each extreme point there exists at least one distribution of

types and values where the extreme point is the unique optimal DIC mechanisms.11

We do not expect stochastic extreme points to closely resemble mechanisms ob-

served in practice. The literature discusses several issues. First, to reduce complexity

and opaqueness, it is appealing to implement a mechanism by randomizing over de-

terministic mechanisms, announcing the selected mechanism, and only then collecting

the agents’ reports (see, for example, Pycia and Ünver (2015)). A stochastic extreme

point is precisely a DIC mechanism that cannot be implemented in this way.12 Sec-

ond, to implement a stochastic extreme point, the designer must commit to honoring

the outcome of a stochastic process (see, for example, Chen et al. (2019)). A com-

mitment issue arises if the agents’ collective information identifies a unique qualified

agent but the mechanism nevertheless promises to flip a coin between this agent and

a less qualified one.

Despite the above points, it may be acceptable to randomize if this happens

“rarely” or is used to break ties between “similar” agents. As it happens, the op-

timality of stochastic extreme points is not limited to such cases. We next present

an example where a stochastic extreme point is uniquely optimal. This stochastic

mechanisms as the set of solutions to a linear system of inequalities, checking for total unimodularity
of the constraint matrix, and then invoking the Hoffman-Kruskal theorem (Korte and Vygen, 2018,
Theorem 5.21). In the mechanism design literature, this approach is discussed in Pycia and Ünver
(2015), for example. Here the approach works for the case where all type spaces are binary; our
proof uses a result which can itself be derived from the Hoffman-Kruskal theorem. However, in
the difficult case with three agents, the constraint matrix is not generally totally unimodular (see
Appendix C.3).

11The argument is as follows. The set of DIC mechanisms is a polytope in Euclidean space that
does not depend on the distribution. All extreme points of the polytope are exposed. Since all
linear functionals on this polytope can be represented via some distribution, the claim follows. See
Appendix C.1 for the formalities.

12In fact, in our model, stochastic extreme points cannot be implemented via any dominant-
strategy equilibrium of any deterministic indirect mechanism. See Appendix C.2. We note, however,
a result of Rivera Mora (2022) implying the following (for our model): Given an arbitrary DIC direct
mechanism, there is an ex-post equilibrium of a deterministic indirect mechanism that implements
the given DIC direct mechanism. In this ex-post equilibrium, the agents play mixed strategies that
emulate the randomization on the part of the given DIC mechanism. These mixed strategies do not
generally form a dominant-strategy equilibrium.
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extreme point “frequently” randomizes between “dissimilar” agents.

5.2 An example of a stochastic extreme point

There are four agents, and their types are as follows:

Θ1 = {ℓ, r}, Θ2 = {u, d}, Θ3 = {f, c, b}, Θ4 = {0}. (5.1)

Figure 1 shows (among other things that are not yet relevant) the type profiles of

agents 1, 2, and 3; the degenerate type of agent 4 is omitted. The types of agents

1, 2, and 3 span a three-dimensional hyperrectangle. (Mnemonically, their types

mean left, right, up, down, front, center, and back.) Each edge of the hyperrectangle

represents a set of type profiles along which exactly one agent’s type is changing.

Hence DIC requires that the winning probability of this agent be constant along the

edge. We identify such an edge by a pair (i, θ−i), where i indicates the agent whose

type is changing, and θ−i indicates the fixed types of the others.

θe

θd

θc

θb

θg

θf
θa

fd
u

ℓ r

c
b

ω̂1(ℓ) = 5 ω̂1(r) = 0

ω̂2(d) = 5

ω̂3(f) = 5(1− ρ)

ω̂3(c) = 0

ω̂2(u) = 0

ω̂3(b) = 5(1− ρ)

1
2

1
2

1
2

1
2

1
2 1

2

1
2

Figure 1: The set of types of agents 1, 2, and 3. The probabilities 1
2
attached to

the edges of the hyperrectangle represent the relevant values of the mechanism φ∗.
The values from the allocation are as defined in (5.5). The distribution µ assigns
probability 1

5
to the profiles {θa, θc, θd, θe, θf}. All other profiles have probability 0.
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Let Θ∗ = {θa, θb, θc, θd, θe, θf , θg} be the set of labeled type profiles in Figure 1;

these are the profiles

θa = (ℓ, d, c, 0), θb = (r, d, c, 0), θc = (r, d, b, 0),

θd = (r, u, b, 0), θe = (r, u, f, 0), θf = (ℓ, u, f, 0),

θg = (ℓ, u, c, 0).

(5.2)

Let V ∗ denote the set of bold edges in Figure 1 that connect the profiles in Θ∗; these

are the edges

V ∗ = {(1, θa−1), (3, θ
c
−3), (2, θ

c
−2), (3, θ

e
−3), (1, θ

e
−1), (3, θ

f
−3), (2, θ

a
−2)}.

Our candidate stochastic extreme point φ∗ is defined as follows (see Figure 1): For

all i ∈ {1, 2, 3} and θ ∈ Θ, let

φ∗
i (θ) =

1
2
, if (i, θ−i) ∈ V ∗,

0, otherwise.

Further, for all θ ∈ Θ let φ∗
4(θ) = 1−

∑
i∈{1,2,3} φ

∗
i (θ). In plain words, at all profiles

in Θ∗, exactly two bold edges of the hyperrectangle intersect at the profile; the mech-

anism φ∗ randomizes evenly between the two agents of these edges. All remaining

probability mass is assigned to agent 4. It is easy to verify from Figure 1 that φ∗ is

a well-defined DIC mechanism.

Further below we specify values Ω and a distribution µ such that φ∗ is the unique

optimal DIC mechanism. This implies that φ∗ is an extreme point of the set of DIC

mechanisms. Since the proof for uniqueness is somewhat involved, we next present a

simple self-contained argument showing that φ∗ is an extreme point.

Let φ be a DIC mechanism that receives non-zero weight in a convex combination

that equals φ∗. We show φ = φ∗. For all profiles θ ∈ Θ∗, there are exactly two

agents i and j such that (i, θ−i) and (j, θ−j) both belong to V ∗; these are the two

bold edges of the hyperrectangle that intersect at θ. Hence at θ the mechanism φ∗

randomizes evenly between i and j. Since φ is part of a convex combination that

equals φ∗, it follows that at θ the mechanism φ only randomizes between i and j,

meaning φi(θ) = 1 − φj(θ). Since φ is DIC, repeatedly applying this observation

14



shows:

φ1(θ
a) = 1− φ3(θ

c) = φ2(θ
c) = 1− φ3(θ

e)

= φ1(θ
e)

= 1− φ3(θ
f ) = φ2(θ

a) = 1− φ1(θ
a).

(5.3)

In particular, we have φ1(θ
a) = 1 − φ1(θ

a), implying φ1(θ
a) = 1

2
. Hence all proba-

bilities in (5.3) equal 1
2
. Hence φ agrees with φ∗ at all profiles in Θ∗. By inspecting

Θ \ Θ∗, we may easily convince ourselves that φ and φ∗ also agree on Θ \ Θ∗. Thus

φ∗ is an extreme point.

We next construct an environment in which φ∗ is uniquely optimal. We could do so

by invoking a separating hyperplane theorem. However, this would be unsatisfying

since we would gain no intuition for why randomization helps or for whether φ∗

is uniquely optimal in a restricted class of environments. We shall gain both by

considering environments in which values are privately known, in the following sense:

for all agents i, the value of allocating to i is pinned down by a function ω̂i that

depends only on θi.

We can describe an environment with privately known values by specifying a

distribution µ over type profiles and, for all agents i, a function ω̂i : Θi → R that

governs the value of allocating to i. Our candidate distribution µ is given by (see

Figure 1)

∀θ∈Θ, µ(θ) =

1
5
, if θ ∈ {θa, θc, θd, θe, θf}

0, else.
(5.4)

Our candidates for ω̂1, . . . ω̂4 are parametrized by ρ ∈ [0, 1
2
] and given by

ω̂1(r) = ω̂2(u) = ω̂3(c) = 0

ω̂1(ℓ) = ω̂2(d) = 5

ω̂3(f) = ω̂3(b) = 5(1− ρ)

ω̂4 = 0.

(5.5)

Proposition 5.2. The mechanism φ∗ is an optimal DIC mechanism if and only if

ρ ∈ [0, 1
2
], and it is uniquely optimal if and only if ρ ∈ (0, 1

2
).
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In the introduction, we intuited that there is a trade-off between allocating to an

agent and using that agent’s information about others. In the present example, this

trade-off involves agent 3 and depends on ρ.

To gain an intuition for the trade-off and the result, consider the case ρ = 0.

Allocating to agent 3 is now ex-post optimal at all except one of the five profiles

in the support of µ. Indeed, one optimal DIC mechanisms is the constant one that

always allocates to agent 3. The mechanism φ∗ is another optimal mechanism for

ρ = 0, which is intuitively explained by agent 3’s type being informative: if θ3 = c

realizes, the type profile must be θa, where θa is the unique type profile in the support

of µ at which allocating to agents 1 or 2 is better than allocating to agent 3. The

mechanism φ∗ indeed allocates to agents 1 and 2 at θa.

Since ρ decreases the value from allocating to agent 3, it is now intuitive that φ∗

does strictly better than always allocating to agent 3 for small but strictly positive

values of ρ. In the formal proof, most of our effort goes towards showing that φ∗ is

in fact uniquely optimal for small but strictly positive values of ρ. The idea is that,

among all DIC mechanisms that are optimal for ρ = 0, the mechanism φ∗ is the

unique one minimizing agent 3’s overall winning probability.

If we increase ρ further, it eventually becomes optimal to use agent 3 as a source

of information and never allocate to agent 3. The critical value turns out to be ρ = 1
2
.

The intuition is confirmed by the fact that, if ρ = 1
2
, the following jury mechanism

with agent 3 as a juror is optimal: if agent 3 reports f , agent 1 wins; if agent 3

reports c, a coin flip determines whether agent 1 or 2 wins; if agent 3 reports b, agent

2 wins.

Proposition 5.2 also helps illustrate the commitment issue discussed in the para-

graphs following Theorem 5.1. At the profile θe, a coin flip determines whether agent

1 or 3 wins the object. Yet, at this profile, the value from allocating to agent 3 is

strictly higher than the value from allocating to agent 1. In fact, a coin is flipped

at all type profiles in the support of the distribution. For ρ ∈ (0, 1
2
), the mechanism

designer is indifferent to the outcome of the coin flip at only one of these profiles.

Remark 5.3. Chen et al. (2019) show that, in certain mechanism design problems,

given any stochastic mechanism there is a deterministic one that induces the same

interim-expected allocations. Since the deterministic mechanism is not guaranteed

to be DIC, their result does not contradict the suboptimality of deterministic DIC

mechanisms in our model.
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Remark 5.4. An alternative approach to showing the existence of a stochastic ex-

treme point uses a graph-theoretic result due to Chvátal (1975), as we explain in

Appendix B.2. For a certain graph G that we define in Appendix B.2, Chvátal’s

theorem implies that all extreme points are deterministic if and only if G is perfect.

To be precise, the results of this appendix concern the related problem where the

mechanism may dispose the object instead of allocating it to the agents. The as-

sociated characterization of extreme points is implied by Theorem 5.1, but not vice

versa.

6 Anonymous juries

In this section, we study anonymous DIC mechanisms. Anonymity, formally defined

below, is roughly the requirement that any two agents exert the same influence with

their reports on the winning probability of any third agent. This is a desirable

property as it helps protect the agents’ privacy when they evaluate their peers, reduces

the complexity of the mechanism, and ensures that the agents have the same voting

rights.

We offer two insights. First, all anonymous DIC mechanisms ignore the reports of

the agents. Second, we consider a relaxed notion of anonymity—partial anonymity—

and show that all deterministic partially anonymous DIC mechanisms are jury mech-

anisms.

Throughout, we assume that the agents share a common type space, meaning

Θ1 = . . . = Θn. In an equally valid interpretation, we can consider indirect mecha-

nisms where all agents have the same message space and cannot influence their own

winning probabilities.

6.1 Notions of anonymity

Anonymity and partial anonymity are defined next. Anonymity requires that, for

all k, the winning probability of agent k does not change if one permutes the re-

ports of the agents other than k. Partial anonymity relaxes anonymity as follows:

When testing whether k’s winning probability is affected by permutations, we only

consider permutations of those agents who actually influence agent k. In particular,

partial anonymity permits the set of agents who influence k to be a proper subset of
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{1, . . . , n} \ {k}.

Definition 2. Let the agents have a common type space. Let φ be a mechanism.

(1) Given i, j, and k that are all distinct, agents i and j are exchangeable for k if

φk is invariant with respect to permutations of i’s and j’s reports; that is, for

all profiles θ and θ′ such that θ is obtained from θ′ by permuting the types of i

and j we have φk(θ) = φk(θ
′).

(2) Given distinct i and k, agent i influences k if φk is non-constant in i’s report;

that is, there exist type profiles θ and θ′ that differ only in i’s type and satisfy

φk(θ) ̸= φk(θ
′).

(3) The mechanism is anonymous if for all i, j, and k that are all distinct, agents

i and j are exchangeable for k.

(4) The mechanism is partially anonymous if for all i, j, and k that are all distinct

we have the following: if i and j both influence k, then i and j are exchangeable

for k.

To state the upcoming characterization of partial anonymity, we also define what

we mean by an anonymous jury.

Definition 3. Let the agents have a common type space. A jury mechanism has an

anonymous jury if all jurors i and j are exchangeable for all agents k.

Remark 6.1. If Assumption 1 holds, then among jury mechanisms it is without loss

to use one with an anonymous jury. Indeed, consider the jury mechanism that selects

the candidate that is best conditional on the types of the jurors (breaking ties in

some fixed order). Under Assumption 1, the identity of the favored candidate does

not change when one permutes the jurors’ types.

6.2 Anonymous DIC mechanisms ignore all reports

Theorem 6.2. Let the agents have a common type space. All anonymous DIC mech-

anisms are constant.

Note well that anonymity does not demand that i and j be exchangeable for i’s

own winning probability. If anonymity did demand this, the theorem would follow

rather trivially from DIC.
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The theorem is more subtly related to the requirement that the mechanism always

allocates the object, as we explain next. This requirement lets us link the influence

that two agents i and j exert on others to the influence that they exert on each other.

More concretely, assume towards a contradiction that at some profile θ agent i

can increase φj by changing their report from θi to some θ′i. By DIC and since the

object is always allocated, this change in i’s report decreases
∑

k : i ̸=k ̸=j φk. Now

consider the profile that is obtained from θ by permuting the reports of i and j. By

anonymity, agent j can change their report from θi to θ
′
i to decrease

∑
k : i ̸=k ̸=j φk.

Using again that the mechanism is DIC and that the object must be allocated, it

follows that the change in agent j’s report increases φi. In summary, if i can increase

j’s winning probability at some profile, then j must also be able to increase i’s winning

probability at a permuted profile. This observation suggests that i and j both win

with “high” probability when both report θ′i. In a deterministic mechanism, where

winning probabilities are either 0 or 1, we thus arrive at a contradiction to there being

only one object to allocate. We address stochastic mechanisms via a substantially

more complex summation over winning probabilities across all pairs (i, j).

Remark 6.3. Theorem 6.2 implies that all DIC mechanisms satisfying the following

stronger notion of anonymity are constant: Whenever the set of reports is permuted,

then the same permutation is applied to the vector of winning probabilities. This

stronger notion captures a sense in which agents are treated equally both as voters

and winners.

Remark 6.4. An implication of Theorem 6.2 is that it is impossible to elicit informa-

tion in environments where anonymity is without loss. Indeed, if the joint distribution

of types and values is invariant with respect to all permutations of the agents, then it

is without loss to use a DIC mechanism that satisfies the strong notion of anonymity

from Remark 6.3. Hence in this case it is without loss to use a constant mechanism.

6.3 Partial anonymity

Theorem 6.2 implies that a non-constant DIC mechanism must admit some asym-

metry in how it processes the reports of different agents. This brings us to partial

anonymity. We offer the following characterization for deterministic mechanisms.
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Theorem 6.5. Let the agents have a common type space. A mechanism is determin-

istic, partially anonymous, and DIC if and only if it is a deterministic jury mechanism

with an anonymous jury.

To better understand the theorem, consider how a partially anonymous jury mech-

anism could fail to admit an anonymous jury. Given agents i and j, partial anonymity

is silent on the winning probabilities of those agents k who are influenced by either i

or j but not by both. By contrast, anonymity of the jury requires that all candidates

are either influenced by all or none of the jurors. Accordingly, most of our effort

goes towards proving that, in a deterministic partially anonymous DIC mechanism,

if i and j influence some third agent k, then i and j influence exactly the same set

of agents. Equipped with this fact, we show that the agents can be partitioned into

equivalence classes with the following property: two agents in the same class do not

influence one another, but influence the same (possibly empty) set of agents outside

the class. Lastly, there cannot be multiple classes; indeed, else there is a profile where

two distinct classes allocate the object to two distinct agents, which is impossible.

The unique class defines an anonymous jury.

6.4 Discussion of Theorems 6.2 and 6.5

We conclude by discussing limitations of Theorems 6.2 and 6.5.

6.4.1 Disposal and randomization

The following definition will be useful: A mechanism with disposal is a function

φ : Θ → [0, 1]n satisfying
∑n

i=1 φi ≤ 1. In plain words, this is a mechanism that

does not necessarily always allocate the object to the agents. For a mechanism with

disposal, DIC and anonymity are defined as above.

The next result shows via an example that Theorem 6.2 does not extend to mecha-

nisms with disposal, and that Theorem 6.5 does not extend to stochastic mechanisms

(without disposal).

Proposition 6.6. Let the agents have a common type space T such that |T | = 7.

(1) If n = 3, then the set of DIC mechanisms with disposal admits an extreme point

that is stochastic and anonymous.
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(2) If n = 4, then the set of DIC mechanisms (without disposal) admits an extreme

point that is stochastic and partially anonymous.

The extreme point in (1) is non-constant (else it would be a convex combination

of deterministic constant mechanisms). The extreme point in (2) is not a jury mecha-

nism (else it would be a convex combination of deterministic jury mechanisms). The

idea of the proof is to “symmetrize” the stochastic extreme point φ∗ from Section 5.2.

See Appendix A.3.3 for the proof and an informal sketch.

6.4.2 Anonymous ballots

Lastly, we discuss the assumption that all agents can make the same reports. Indeed,

a third escape route from Theorem 6.2 (besides partial anonymity and disposal) en-

tails message spaces with some inherent asymmetry across agents. This brings us

to the results of Holzman and Moulin (2013) and Mackenzie (2015, 2020). They

consider DIC mechanisms where agents nominate one another. Let us keep with the

terminology of Holzman and Moulin by referring to these mechanisms as impartial

nomination rules. This is the same mathematical object as a DIC mechanism when

each agent i’s type space is {1, . . . , n} \ {i}. Their notion of anonymity—anonymous

ballots—requires that the winning probabilities depend only on the number of nom-

inations received by each agent.13 Importantly, in a nomination rule agents cannot

nominate themselves, and hence they all have distinct message spaces. By contrast,

we have assumed that the agents have the same type space. Hence our notion of

anonymity neither nests nor is nested by anonymous ballots.

Contrasting Theorem 6.2, there are non-constant impartial nomination rules with

anonymous ballots. For one example, suppose one of the agents is selected uniformly

at random as a juror, following which the juror’s nomination determines a winner.

See Mackenzie (2015, Theorem 1) for a full characterization of anonymous ballots.

Mackenzie’s result generalizes Theorem 3 of Holzman and Moulin (2013), who had

previously shown that all deterministic impartial nomination rules with anonymous

ballots are constant.

Mackenzie (2020) shows that impartiality and anonymous ballots are compatible

13Equivalently, the allocation is unchanged if one permutes the profile in a way that does not
yield self-nominations (Mackenzie, 2015, Lemma 1.1). Mackenzie uses the name voter anonymity
instead of anonymous ballots.
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for deterministic nomination rules with disposal.14 This parallels our discussion from

Section 6.4 and contrasts the aforementioned Theorem 3 of Holzman and Moulin

(2013). Mackenzie (2020, Theorem 1) also shows that when agents can nominate

themselves, then deterministic impartial nomination rules with anonymous ballots

must be constant. This is a special case of our Theorem 6.2 as anonymous ballots

with self-nominations is stronger than anonymity.

7 Conclusion

We saw that jury mechanisms are optimal with three agents, and approximately-

optimal when there are many exchangeable agents in the sense of Assumption 1.

While DIC mechanisms cannot process all reports anonymously, jury mechanisms

are the only deterministic partially anonymous DIC mechanisms. Lastly, outside of

special cases of the model, the set of DIC mechanisms admits stochastic extreme

points.

We conclude by discussing some interesting open problems.

The discussion on stochastic extreme points (Section 5.1) motivates restricting

attention to deterministic mechanisms. We observe in Appendix C.4 that finding

an optimal deterministic DIC mechanism can be cast as the problem of finding a

maximum weight perfect matching in a certain hypergraph. If we relax the require-

ment that the object is always allocated, the problem can also be cast as finding

a maximum weight independent set in another graph. Both of these problems are

known to be NP-hard when general (hyper-)graphs and weights are considered. As

such, it is interesting to investigate the hardness of the problem for the particular

family of (hyper-)graphs that emerge from our model. (All weights can emerge via

a suitable choice of the distribution of types and values.) If we include stochastic

mechanisms in our search, finding an optimal DIC mechanism is a linear program

and hence computationally tractable.

It is naturally interesting to extend the analysis to settings with multiple ob-

jects, allocated simultaneously or over many periods.15 If the mechanism designer

14In fact, Mackenzie (2020, Theorem 2) shows that impartiality, anonymous ballots, and some
other desirable axioms together characterize supermajority.

15See Guo and Hörner (2021) for recent work in this direction with a single agent. The literature
following Alon et al. (2011) has also studied settings with multiple objects. Lipnowski and Ramos
(2020) and de Clippel et al. (2021) study settings with limited or no commitment.
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can commit to future allocations, this should lead to stronger foundations for jury

mechanisms. Agents serving as jurors today can be promised a future spot as can-

didates, which may help justify excluding jurors as potential winners in the present.

Alternatively, past winners may be expected to volunteer as jurors in the future.

The problem of finding an optimal composition of the jury is an interesting prob-

lem in itself. We expect interesting comparative statics when agents who are likely

to have good information are also likely to yield a high value. In the example from

the introduction where a group selects a president, say, an agent who is popular with

others may be a suitable candidate (being well-liked for their pleasant qualities) but

also have good information about others (being well-acquainted with everyone).

An important line of future research concerns optimal DIC mechanisms when

agents care about the allocation to their peers. While DIC has different implications

in such a model, our results provide insight in at least two cases. Firstly, in situations

where agents evaluate their peers, it is seems inherently interesting to use a mecha-

nism where agents cannot influence their individual chances of winning; that is, to

impose the impartiality axiom of Holzman and Moulin (2013). Secondly, suppose

agents have the following lexicographic preferences: each agent i strictly prefers one

allocation to another if the former has i winning with strictly higher probability; if

two allocations have the same winning probability for i, agent i ranks them accord-

ing to some type-dependent preference. In some applications, this preference could

reasonably capture i’s opinion about who is the most deserving winner if it cannot

be i themself. In particular, it could coincide with the preference of the mechanism

designer. In this case, optimal jury mechanism are ex-post incentive compatible.

However, an agent’s preferences may also differ from those of the designer. This is

plausibly the case when agents are biased in favor of friends or family, biased against

minorities, or simply have a different notion of who deserves to win.16 Fixing a jury of

agents, the designer therefore also has to design a voting rule for eliciting the jurors’

information.

16For example, Alatas et al. (2012), reporting on a field experiment on selecting beneficiaries of
aid programs in Indonesian communities, find evidence of nepotism, though the welfare impact may
be small relative to other upsides from involving the community in the decision. They also find
evidence that community members have a poverty notion that differs from poverty as defined by
per capita income. In this sense, if the central government wishes to select beneficiaries on the basis
of per capita income, agents indeed hold a different notion of who deserves to win.
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Appendices

In Appendices A.1 to A.3, respectively, we present the omitted proofs for Sections 4

to 6, respectively. Appendix B studies the model where the object does not have to be

allocated. Appendix C contains results that were previously mentioned in passing.

Appendix A Omitted proofs

A.1 Jury mechanisms

A.1.1 Proof of Lemma 4.3

Proof of Lemma 4.3. If n = 1 or n = 2, it is easy to verify that all DIC mechanisms

are constant. All constant mechanisms are convex combination of deterministic con-

stant mechanisms, proving the claim. In what follows, let n = 3. Given an arbitrary

stochastic DIC mechanism φ, we will find a non-zero function f such that φ+ f and

φ−f are two other DIC mechanisms. This shows that all extreme points of the set of

DIC mechanisms are deterministic. Since this set is non-empty, convex and compact

as a subset of Euclidean space, the claim follows from the Krein-Milman theorem.

In what follows, we fix a stochastic DIC mechanisms φ. Let us agree to the

following terminology. In view of DIC, we drop i’s type from φi. Given a profile θ,

we refer to the equation
∑

i∈{1,2,3} φi(θ−i) = 1 as the feasibility constraint at profile

θ. We refer to (i, θ−i) as the node of agent i with coordinates θ−i. Lastly, when we

say φi(θ−i) is interior we naturally mean φi(θ−i) ∈ (0, 1).

Most of the work will go towards proving the following auxiliary claim.

Claim A.1. There are non-empty disjoint subsets R and B (“red” and “blue”) of

∪i∈{1,2,3}({i} ×Θ−i) such that all of the following are true:

(1) If (i, θ−i) ∈ R ∪B, then φi(θ−i) is interior.

(2) For all θ ∈ Θ, exactly one of the following is true:

(a) There does not exist i ∈ {1, 2, 3} such that (i, θ−i) ∈ R ∪B.

(b) There exists exactly one i ∈ {1, 2, 3} such that (i, θ−i) ∈ R, exactly one

j ∈ {1, 2, 3} such that (j, θ−j) ∈ B, and exactly one k ∈ {1, 2, 3} such that

(k, θ−k) /∈ R ∪B.
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Before proving Claim A.1, let us use it to complete the proof of Lemma 4.3. For

a number ε to be chosen in a moment, let f : Θ → {−ε, 0, ε}3 be defined as follows:

∀θ∈Θ, fi(θ) =


−ε, if (i, θ−i) ∈ R,

ε, if (i, θ−i) ∈ B,

0, if (i, θ−i) /∈ R ∪B.

By finiteness of Θ and Claim A.1, if we choose ε > 0 sufficiently close to 0, then φ+f

and φ− f are two DIC mechanisms. Since f is non-zero, it follows that φ is not an

extreme point. It remains to prove Claim A.1.

Proof of Claim A.1. Given candidate sets R and B, let us say a profile θ is uncolored

if it falls into case (2.a) of Claim A.1. A profile two-colored if it falls into case (2.a)

of Claim A.1. In this terminology, our goal is to construct sets R and B such that

all (i, θ−i) ∈ R ∪ B satisfy φi(θ−i) ∈ (0, 1), and such that all type profiles are either

uncolored or two-colored.

Since φ is stochastic, we may assume (after possibly relabelling the agents and

types) that there exists a profile θ0 such that φ1(θ
0
2, θ

0
3) and φ2(θ

0
1, θ

0
3) are interior.

Let Θ◦
2 denote the set of types θ2 for which φ1(θ2, θ

0
3) is interior. Let Θ

∂
2 = Θ2\Θ◦

2.

Similarly, let Θ◦
1 denote the set of types θ1 such that φ2(θ1, θ

0
3) is interior, and let

Θ∂
1 = Θ1 \ Θ◦

1. Notice that Θ◦
1 and Θ◦

2 are non-empty as, by assumption, agents 1

and 2 are enjoying interior winning probabilities at θ0.

We consider two cases.

Case 1. Let Θ∂
1 ̸= ∅ and Θ∂

2 ̸= ∅.
We establish two auxiliary claims.

Claim A.2. If θ1 ∈ Θ∂
1 , then φ2(θ1, θ

0
3) = 0. Similarly, if θ2 ∈ Θ∂

2 , then φ1(θ2, θ
0
3) =

0. If (θ1, θ2) ∈ (Θ◦
1 ×Θ∂

2) ∪ (Θ∂
1 ×Θ◦

1), then φ3(θ1, θ2) is interior.

Proof of Claim A.2. Consider the first part of the claim. Let θ1 ∈ Θ∂
1 . Recalling that

Θ◦
1 is non-empty, let us find a type θ2 ∈ Θ◦

1. By definition, φ1(θ2, θ
0
3) is interior. By

definition of Θ∂
1 , we also know that φ2(θ1, θ

0
3) must either equal 0 or 1. But it cannot

equal 1 since φ2(θ1, θ
0
3) and φ1(θ2, θ

0
3) both appear in the feasibility constraint at the

profile (θ1, θ2, θ
0
3), and since φ1(θ2, θ

0
3) is interior. Thus φ2(θ1, θ

0
3) = 0, as desired.

A similar argument establishes the second claim.

25



As for the third claim, let (θ1, θ2) ∈ Θ◦
1×Θ∂

2 . The previous two paragraphs imply

that at the profile (θ1, θ2, θ
0
3) the winning probability of agent 1 is 0. Moreover, by

definition of Θ◦
1, the winning probabiltiy of agent 2 is interior. Thus agent 3’s winning

probability at this profile must be interior, meaning φ3(θ1, θ2) is interior. A similar

argument shows that φ3(θ1, θ2) is interior whenever (θ1, θ2) is in Θ∂
1 ×Θ◦

1.

The second auxiliary result is:

Claim A.3. Let θ3 ∈ Θ3. If θ2 ∈ Θ◦
2, then φ1(θ2, θ3) is interior. Similarly, if θ1 ∈ Θ◦

1,

then φ2(θ1, θ3) is interior.

Proof of Claim A.3. We will prove the first part of the claim, the second being simi-

lar. Thus let θ2 ∈ Θ◦
2. By assumption of Case 1, we may find θ∂1 ∈ Θ∂

1 and θ∂2 ∈ Θ∂
2 .

We make two auxiliary observations.

First, consider the profile (θ∂1 , θ
∂
2 , θ

0
3). According to Claim A.2, both agent 1’s

and agent 2’s winning probabilities at this profile equal 0. Thus φ3(θ
∂
1 , θ

∂
2 ) = 1.

But φ3(θ
∂
1 , θ

∂
2 ) and φ2(θ

∂
1 , θ3) both appear in the feasibility constraint at the profile

(θ∂1 , θ
∂
2 , θ3). Hence φ2(θ

∂
1 , θ3) = 0.

Second, since θ∂1 ∈ Θ∂
1 and θ2 ∈ Θ◦

2, we infer from Claim A.2 that φ3(θ
∂
1 , θ2) is

interior.

The previous two observations imply that at the profile (θ∂1 , θ2, θ3) agent 2’s

winning probability is 0 and that agent 3’s winning probability is interior. Hence

φ1(θ2, θ3) is interior, as promised.

We are ready to define the sets R and B. We assign the following colors (recall

the terminology introduced in the paragraph before Claim A.1):

• red to all nodes of agent 1 with coordinates in Θ◦
2 ×Θ3,

• blue to all nodes of agent 3 with coordinates in Θ∂
1 ×Θ◦

2,

• blue to all nodes of agent 2 with coordinates in Θ◦
1 ×Θ3,

• red to all nodes of agent 3 with coordinates in Θ◦
1 ×Θ∂

2 .

According to Claims A.2 and A.3, all of these nodes are interior. Moreover, all profiles

are now either two-colored or uncolored: The profiles in Θ∂
1×Θ◦

2×Θ3 are two-colored

via red nodes of agent 1 and blue nodes of agent 3; the profiles in Θ◦
1 × Θ◦

2 × Θ3

are two-colored via red nodes of agent 1 and blue nodes of agent 2; the profiles in

Θ◦
1 ×Θ∂

2 ×Θ3 are two-colored via blue nodes of agent 2 and red nodes of 3; and the

profiles in Θ∂
1 ×Θ∂

2 ×Θ3 are uncolored. ▲
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Case 2. Suppose at least one of the sets Θ∂
1 and Θ∂

2 is empty. In what follows, we

assume that Θ∂
2 is empty, the other case being analogous (switch the roles of agents

1 and 2).

The assumption that Θ∂
2 is empty means that φ1(θ2, θ

0
3) is interior for all θ2. Let

Θ∗
1 be the set of types θ1 such that for all θ2 ∈ Θ2 the probability φ3(θ1, θ2) is interior.

Notice that at this point Θ∗
1 may or may not be empty; we will make a case distinction

further below.

We first claim that if θ1 ∈ (Θ1 \ Θ∗
1), then φ2(θ1, θ

0
3) is interior. Towards a

contradiction, suppose this were false for some θ1 ∈ (Θ1 \ Θ∗
1). This means that we

can find a type θ2 ∈ Θ2 such that φ2(θ1, θ
0
3) and φ3(θ1, θ2) both fail to be interior.

Recall from the previous paragraph that φ1(θ2, θ
0
3) is interior for all θ2. Hence at

the profile (θ1, θ2, θ
0
3) only agent 1 is enjoying an interior winning probability; this is

impossible.

Before proceeding further, let us assign the following colors:

• red to all nodes of agent 1 with coordinates in Θ2 × {θ03}. These nodes are all

interior since Θ∂
2 is empty.

• blue to all nodes of agent 2 with coordinates in (Θ1 \Θ∗
1)×{θ03}. The previous

paragraph implies that these nodes are all interior.

• blue to all nodes of agent 3 with coordinates in Θ∗
1 × Θ2. These nodes are all

interior by definition of Θ∗
1.

Observe that all profiles in Θ1 ×Θ2 × {θ03} are now either two-colored or uncolored.

If Θ∗
1 is empty, then the colors assigned above already define sets R and B with

the desired properties, completing the proof. Thus suppose Θ∗
1 is non-empty.

Let θ3 ∈ Θ3 \ {θ03} be arbitrary. The fact that we have already assigned blue to

the nodes of agent 3 with coordinates Θ∗
1 × Θ2 requires us to assign some colors to

the nodes of agents 1 or 2 whose 3’rd coordinate is θ3. In this step, we will not color

any further nodes of agent 3. We make a case distinction.

(1) Suppose that for all θ1 in Θ∗
1 the probability φ2(θ1, θ3) is interior. We assign

red to all nodes of agent 2 with coordinates in Θ∗
1×{θ3}. This yields a coloring

of the profiles in Θ1 × Θ2 × {θ03} with the desired properties: The profiles in

Θ∗
1 × Θ2 × {θ3} are two-colored via red nodes of agent 2 and blue nodes of 3;

the profiles in (Θ1 \Θ∗
1)×Θ2 × {θ3} are uncolored.

(2) Suppose there exists θ̃1 ∈ Θ∗
1 such that φ2(θ1, θ3) is interior. Given that

φ3(θ̃1, θ2) is interior for all θ2 ∈ Θ2 (recall the definition of Θ∗
1), it must be
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the case that, for all θ2 ∈ Θ2, the probability φ1(θ2, θ3) is interior.

We next claim that φ2(θ1, θ3) is interior for all θ1 ∈ (Θ1\Θ∗
1). Suppose this were

false for some θ1 ∈ (Θ1 \Θ∗
1). The previous paragraph tells us that φ1(θ2, θ3) is

interior for all θ2. Thus, if φ2(θ1, θ3) fails to be interior, then φ3(θ1, θ2) would

have to be interior for all θ2 ∈ Θ2; this is a contradiction since θ1 ∈ (Θ1 \Θ∗
1).

We now assign red to all nodes of agent 1 with coordinates in Θ2 × {θ3}, and
assign blue to all nodes of agent 2 with coordinates in (Θ1 \ Θ∗

1) × {θ3}. The

previous two paragraphs imply that all of these nodes are interior. Moreover

the profiles in Θ∗
1×Θ2×{θ3} are two-colored via red nodes of agent 1 and blue

nodes of agent 3, and the profiles in (Θ1 \Θ∗
1)×Θ2 × {θ3} are two-colored via

red nodes of agent 1 and blue nodes of agent 2.

If we apply this case distinction separately to all θ3 in Θ3 \ {θ03}, this completes the

construction of R and B in Case 2. ▲

Cases 1 and 2 together complete the proof of Claim A.1.

A.1.2 Approximate optimality of jury mechanisms

In this part of the appendix, we prove Theorem 4.4. To distinguish a random variable

from its realization, we denote the former using a tilde ∼. Given a set N of agents, we

denote the profile of their types by θN , and the set of these profiles by ΘN . For exam-

ple, given i ∈ N , ωi ∈ Ωi, and θN\{i} ∈ ΘN\{i}, we write µ
(
ω̃i = ωi, θ̃N\{i} = θN\{i}

)
to mean the probability of the event that i’s value is ωi and the types of the other

agents in N are θN\{i}.

Assumption 2. For all n ∈ N, there exists m ∈ N with the following property:

Denoting N = {1, . . . , n} and N ′ = {n+ 1, . . . , n+m}, there is a function g : ΘN ′ ×
ΘN → R+ with the following two properties:

(1) For all i ∈ N , all ωi ∈ Ωi and θN\{i} ∈ ΘN\{i} we have

µ
(
ω̃i = ωi, θ̃N\{i} = θN\{i}

)
=

∑
θN′∈ΘN′

∑
θi∈Θi

g(θN ′ , θN\{i}, θi)µ
(
ω̃i = ωi, θ̃N ′ = θN ′

)
.

(A.1)
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(2) For all θN ′ ∈ ΘN ′ we have ∑
θN∈ΘN

g(θN ′ , θN) = 1. (A.2)

Lemma A.4. Assumption 1 implies Assumption 2.

Proof of Lemma A.4. Let m = n. Let N = {1, . . . , n} and N ′ = {n + 1, . . . , 2n},
and let ξ : N → N ′ be a bijection. It is straightforward to verify that the function g

defined as follows has the desired properties: For all (θN , θN ′), let g(θN , θN ′) = 1 if

for all i ∈ N the types of i and ξ(i) agree; else, let g(θN , θN ′) = 0.

Proof of Theorem 4.4. The second part of the claim is immediate from the first.

For the first part, let φ be an arbitrary DIC mechanism with n agents. Let N =

{1, . . . , n}. For this choice of N , we invoke Lemma A.4 to find m and g as in As-

sumption 2. Let N ′ = {n+ 1, . . . , n+m}. We define our candidate jury mechanism

as follows: For all i ∈ N , let ψi : ΘN ′ → Rn be defined by

∀θN′∈ΘN′ , ψi(θN ′) =
∑

θN∈ΘN

g(θN ′ , θN)φ
∗
i (θN\{i}).

For all i ∈ N ′, let ψi = 0. Let ψ = (ψ1, . . . , ψm).

Notice that ψ only depends on the reports of agents in N ′. Since N ′ is disjoint

from N , we can show that ψ is a jury mechanism in the setting with n +m agents

by showing that ψ maps to probability distributions over N . It is clear that φ is

non-negative (as g and ψ∗ are non-negative). To verify that ψ almost surely allocates

to an agent in N , we observe that for all profiles θN ′ we have the following (the first

equality is by definition of ψ; the second is from the fact that φ∗ is a well-defined

mechanism when the set of agents is N ; the third is from (A.2)):∑
i∈N

ψi(θN ′) =
∑
i∈N

∑
θN∈ΘN

g(θN ′ , θN)φ
∗
i (θN\{i}) =

∑
θN∈ΘN

g(θN ′ , θN) = 1,

as desired. We complete the proof by verifying that φ and ψ lead to the same expected

value. We write the expected value from φ as follows (the first equality follows from
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(A.1); the remaining equalities obtain by rearranging):∑
i∈N

∑
θN\{i}

∑
ωi

ωiµ
(
ω̃i = ωi, θ̃N−i = θN\{i}

)
φ∗
i (θN\{i})

=
∑
i∈N

∑
θN\{i}

∑
ωi

ωi

∑
θN′

∑
θi

g(θN ′ , θN\{i}, θi)µ
(
ω̃i = ωi, θ̃N ′ = θN ′

)
φ∗
i (θN\{i})

=
∑
i∈N

∑
ωi

∑
θN′

ωiµ
(
ω̃i = ωi, θ̃N ′ = θN ′

) ∑
θN\{i}

∑
θi

g(θN ′ , θN\{i}, θi)φ
∗
i (θN\{i})

=
∑
i∈N

∑
ωi

∑
θN′

ωiµ
(
ω̃i = ωi, θ̃N ′ = θN ′

)
ψi(θN ′).

This last expression is precisely the expected value from ψ.

A.2 Random allocations

A.2.1 Proof of Proposition 5.2

Proof of Proposition 5.2. To keep calculations readable, it will be convient to adopt

the following notation: When a DIC mechanism φ is given, we denote

φ1(θ
a) = pa|b, φ3(θ

c) = pb|c, φ2(θ
c) = pc|d, φ3(θ

e) = pd|e,

φ1(θ
e) = pe|f , φ3(θ

f ) = pf |g, φ2(θ
a) = pg|a.

The probabilities in the previous display do not fully describe the mechanism, but

these are the only ones needed to evaluate the mechanism. For a given value of ρ, we

denote the expected value from φ by Vρ(φ). Direct computation shows

Vρ(φ) = pa|b + pb|c + pc|d + 2pd|e + pe|f + pf |g + pg|a − ρ
(
pb|c + 2pd|e + pf |g

)
. (A.3)

In particular, Vρ(φ
∗) = 4− 2ρ.

We first show that φ∗ is uniquely optimal if ρ ∈ (0, 1
2
). The following auxiliary

claim is central.

Claim A.5. Let φ be a DIC mechanism distinct from φ∗. We have V 1
2
(φ) ≤ V 1

2
(φ∗).

Further, there exists ρφ ∈ (0, 1
2
) such that ρ ∈ (0, ρφ) implies Vρ(φ) < Vρ(φ

∗).

Proof of Claim A.5. Inspection of Figure 1 shows that φ must satisfy the following
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system of inequalities:

pa|b + pg|a ≤ 1, pa|b + pb|c ≤ 1, pc|d + pb|c ≤ 1, pc|d + pd|e ≤ 1,

pe|f + pd|e ≤ 1, pe|f + pf |g ≤ 1, pg|a + pf |g ≤ 1.
(A.4)

Turning to the first part of the claim, we have to show V 1
2
(φ) ≤ V 1

2
(φ∗). Direct

computation shows V 1
2
(φ∗) = 3. Using (A.4), we can bound V 1

2
(φ) as follows.

V 1
2
(φ) =pa|b + pb|c + pc|d + 2pd|e + pe|f + pf |g + pg|a − 1

2

(
pb|c + 2pd|e + pf |g

)
=pa|b +

pb|c

2
+ pc|d + pd|e + pe|f +

pf |g

2
+ pg|a

= pa|b + pg|a︸ ︷︷ ︸
≤1

+
pb|c + pc|d

2︸ ︷︷ ︸
≤ 1

2

+
pc|d + pd|e

2︸ ︷︷ ︸
≤ 1

2

+
pd|e + pe|f

2︸ ︷︷ ︸
≤ 1

2

+
pe|f + pf |g

2︸ ︷︷ ︸
≤ 1

2

≤1 +
1

2
+

1

2
+

1

2
+

1

2

=3.

Hence V 1
2
(φ) ≤ V 1

2
(φ∗), as promised.

Now consider the second part of the claim. We show the contrapositive: If there

exists a sequence {ρk}k∈N in (0, 1
2
) that converges to 0 and such that Vρk(φ) ≥ Vρk(φ

∗)

holds for all k, then φ = φ∗. Let {ρk}k∈N be such a sequence. For all ρk, the system

(A.4) implies the following upper bound on Vρk(φ):

Vρk(φ) = pa|b + pb|c︸ ︷︷ ︸
≤1

+ pc|d + pd|e︸ ︷︷ ︸
≤1

+ pd|e + pe|f︸ ︷︷ ︸
≤1

+ pf |g + pg|a︸ ︷︷ ︸
≤1

− ρk
(
pb|c + 2pd|e + pf |g

)
≤4− ρk

(
pb|c + 2pd|e + pf |g

)
.

(A.5)

Since Vρk(φ) ≥ Vρk(φ
∗) = 4− 2ρk and ρk > 0, we find

pb|c + 2pd|e + pf |g ≤ 2. (A.6)

Further, since Vρk(φ) ≥ 4 − 2ρk holds for all k, taking limits implies V0(φ) ≥ 4.
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Together with the bound in (A.5) we get V0(φ) = 4; that is,

V0(φ) = pa|b + pb|c + pc|d + pd|e + pd|e + pe|f + pf |g + pg|a = 4 (A.7)

Hence (A.4) and (A.7) imply

pa|b + pb|c = pc|d + pd|e = pd|e + pe|f = pf |g + pg|a = 1. (A.8)

We now bound V0(φ) a second time (the equality is by direct computation; the

inequality follows from (A.4)):

V0(φ) = pa|b + pg|a + pb|c + pc|d + 2pd|e + pe|f + pf |g ≤ 3 + 2pd|e. (A.9)

Hence V0(φ) = 4 implies pd|e ≥ 1
2
. We next claim pd|e = 1

2
. Towards a contradiction,

suppose not, meaning pd|e > 1
2
. Hence (A.8) implies pc|d = pe|f < 1

2
. Now, we also

know from (A.6) and (A.7) that

pa|b + pc|d + pe|f + pg|a ≥ 2

holds. However, in light of (A.4) we have pa|b + pg|a ≤ 1, and hence the previous

display requires pc|d + pe|f ≥ 1. This contradicts pc|d = pe|f < 1
2
. Thus pd|e = 1

2
.

Let us now return to the bound derived in (A.9). In view of pd|e = 1
2
and (A.4),

we can infer from (A.9) that pa|b + pg|a = pb|c + pc|d = pe|f + pf |g = 2pd|e = 1 holds.

Together with (A.8), we find

pa|b = 1− pb|c = pc|d = 1− pd|e = pe|f = 1− pf |g = pg|a. (A.10)

We already know that pd|e = 1
2
holds. Hence all probabilities (A.10) must equal 1

2
.

This shows that φ agrees with φ∗ at all profiles in Θ∗ = {θa, θb, θc, θd, θe, θf , θg}. By
inspecting Θ \Θ∗, it is now easy to verify that φ and φ∗ also agree on Θ \Θ∗.

We next use Claim A.5 to show that φ∗ is uniquely optimal if ρ ∈ (0, 1
2
). Let φ be

an arbitrary DIC mechanisms distinct from φ∗. Inspection of (A.3) shows that the

difference Vρ(φ)− Vρ(φ
∗) is an affine function of ρ. That is, there exist reals aφ and

bφ such that Vρ(φ)−Vρ(φ∗) = aφ+bφρ holds for all ρ ∈ [0, 1
2
]. Let ρφ ∈ (0, 1

2
) be as in

the conclusion of Claim A.5. If ρ ∈ (0, ρφ), the choice of ρφ implies Vρ(φ) < Vρ(φ
∗),
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and so we are done. Hence in what follows we assume ρ ∈ [ρφ,
1
2
). We distinguish

two cases.

(1) If bφ ≤ 0, then

Vρ(φ)− Vρ(φ
∗) = aφ + bφρ ≤ aφ + bφ

ρφ
2

= V ρφ
2
(φ)− V ρφ

2
(φ∗).

Now ρφ
2
∈ (0, ρφ) and the choice of ρφ imply V ρφ

2
(φ)− V ρφ

2
(φ∗) < 0, and we are

done.

(2) If bφ > 0, then

Vρ(φ)− Vρ(φ
∗) = aφ + bφρ < aφ + bφ

1

2
= V 1

2
(φ)− V 1

2
(φ∗).

Now Claim A.5 implies V 1
2
(φ)− V 1

2
(φ∗) ≤ 0, and we are done.

Hence all ρ ∈ (0, 1
2
) and all DIC mechanisms φ distinct from φ∗ satisfy Vρ(φ) <

Vρ(φ
∗).

It remains to show that φ∗ is not uniquely optimal if ρ ∈ {0, 1
2
}, and that φ∗ is

not optimal if ρ /∈ [0, 1
2
]. To that end, recall the constant mechanism and the jury

mechanism described in the paragraphs after Proposition 5.2. By direct computation

one can show that the constant mechanism or the jury mechanism, respectively,

generate the same expected value as φ∗ if ρ = 0 or ρ = 1
2
, respectively. Thus φ∗ is

not uniquely optimal if ρ ∈ {0, 1
2
}. Since φ∗ is uniquely optimal on (0, 1

2
), and since

the expected value is affine in ρ, we conclude that φ∗ is not optimal if ρ /∈ [0, 1
2
].

A.2.2 Proof of Theorem 5.1

Lemma A.6. If for all agents i we have |Θi| ≤ 2, then all extreme points of the set

of DIC mechanisms are deterministic.

For the proof, recall the following definitions for a given (simple undirected) graph

G with node set V and edge set E. Given a node v, the set of edges which are

incident to v is denoted E(v). A perfect matching is a function ψ : E → {0, 1} such

that all v ∈ V satisfy
∑

e∈E(v) ψ(e) = 1. The perfect matching polytope is the set

{ψ : E → [0, 1] : ∀v∈V ,
∑

e∈E(v) ψ(e) = 1}.

Proof of Lemma A.6. Let us relabel types such that we have Θi ⊆ {0, 1} for all i.

First, suppose we have Θi = {0, 1} for all i.
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For all DIC mechanisms φ, all agents i and all profiles θ, we may drop i’s report

from i’s winning probability, writing φi(θ−i) instead of φi(θ). Under this convention,

we claim that the set of DIC mechanisms is the perfect matching polytope of the

graph G that has node set {0, 1}n and where two nodes are adjacent if and only

if they differ in exactly one coordinate. (This graph is known as the n-hypercube.)

Indeed, each node of the graph is a type profile θ, and each edge may be identified

with a pair of the form (i, θ−i). The set of edges incident to θ is the set {(i, θ−i)}ni=1.

Hence the constraint
∑

e∈E(v) ψ(e) = 1 is exactly the constraint that the object be

allocated to one of the agents.

Now, the graph G described in the previous paragraph is bi-partite (partition the

type profiles (that is, the nodes of G) according to whether the profile has an odd

or even number of entries equal to 0). It follows from Theorem 11.4 of Korte and

Vygen (2018) that all extreme points of the perfect matching polytope are perfect

matchings. All perfect matchings represent deterministic DIC mechanisms. Hence

all extreme points of the set of DIC mechanisms are deterministic.

The claim for the general case, where we have Θi ⊆ {0, 1} for all i, follows from

the previous paragraph by viewing a DIC mechanism on Θ as a mechanism on {0, 1}n

that ignores the reports of those whose type spaces are singletons.

Lemma A.7. If |{i ∈ {1, . . . , n} : |Θi| ≥ 2}| ≤ 2, then all extreme points of the set

of DIC mechanisms are deterministic.

Proof of Lemma A.7. We may assume n ≥ 3, as otherwise the claim follows from

Lemma A.6. We will prove the claim for the case where |{i ∈ {1, . . . , n} : |Θi| ≥
2}| = 2, the other cases being simpler. After possibly relabelling the agents, suppose

we have |Θ1| ≥ 2 and |Θ2| ≥ 2. Let φ be a stochastic DIC mechanism. Notice that

at all profiles θ where either agent 1 or agent 2 but not both is enjoying an interior

winning probability, there must be an agent in {3, . . . , n} who is also enjoying an

interior winning probability; let iθ denote one such agent. For a number ε > 0 to be

chosen later, consider f : Θ → {−ε, 0, ε}n defined for all θ as follows:

(1) If φ1(θ) ∈ (0, 1) and φ2(θ) ∈ (0, 1), let f1(θ) = ε, let f2(θ) = −ε, and let

fi(θ) = 0 for all i /∈ {1, 2}.
(2) If φ1(θ) ∈ (0, 1) and φ2(θ) /∈ (0, 1), let f1(θ) = ε, let fiθ(θ) = −ε, and let

fi(θ) = 0 for all i /∈ {1, iθ}.
(3) If φ1(θ) /∈ (0, 1) and φ2(θ) ∈ (0, 1), let f2(θ) = −ε, let fiθ(θ) = ε, and let
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fi(θ) = 0 for all i /∈ {2, iθ}.
Using that, for all θ, agent iθ has a singleton type space, it is easy to see that φ+ f

and φ− f are two DIC mechanisms distinct from φ whenever ε is sufficiently small.

Thus φ is not an extreme point.

Proof of Theorem 5.1. Lemmata 4.3, A.6 and A.7 imply that all extreme points are

deterministic if one of the conditions (1) to (3) holds. Now let conditions (1) to

(3) all fail. We know from Section 5.2 that a stochastic extreme point exists in the

hypothetical situation where n = 4 and the set of type profiles is Θ̂ = {ℓ, r}×{u, d}×
{f, c, b}×{0}. Since (1) to (3) all fail, we can relabel the agents and types such that

agents 1 to 4 have these sets as subsets of their respective sets of types. Let φ∗ denote

the stochastic extreme point Section 5.2. Using φ∗, it is straightforward to define a

stochastic extreme point for the actual set of type profiles with n agents. To see this

in detail, let us agree to the following notation: when i ∈ {1, 2, 3}, then Θ̂−i means

the sets of type profiles of agents {1, 2, 3, 4} \ {i} that belong to Θ̂. Now consider

ψ∗ : Θ → Rn defined as follows: For all i ∈ {1, . . . , n} \ {1, 2, 3, 4}, let ψ∗
i = 0; for all

i ∈ {1, 2, 3} and all θ ∈ Θ, let ψ∗
i (θ) = φ∗

i (θ1, θ2, θ3, θ4) if (θj)j∈{1,2,3,4}\{i} ∈ Θ̂−i, and

let ψ∗
i (θ) = 0 if (θj)j∈{1,2,3,4}\{i} /∈ Θ̂−i; let ψ

∗
4 = 1 −

∑3
i=1 ψ

∗
i . A moment’s thought

reveals that ψ∗ is a well-defined DIC mechanism. To see that it is a stochastic extreme

point, consider an arbitrary DIC mechanism ψ that appears in a convex combination

that equals ψ∗. We know from Section 5.2 that ψ must agree with ψ∗ whenever the

types of agents 1 to 4 are in Θ̂. From here it is easy to see that ψ must agree with

ψ∗ at all other profiles, too.

A.3 Anonymous juries

A.3.1 Proof of Theorem 6.2

Proof of Theorem 6.2. Let φ be DIC and anonymous.

The following notation is useful. Let T denote the common type space. Let

T n−1 with generic element θn−1 denote the (n− 1)-fold Cartesian product of T . We

will frequently consider profiles obtained from a profile θn−1 in T n−1 by replacing

one entry of θn−1. For instance, we write (t, θn−1
−j ) to denote the profile obtained by

replacing the j’th entry of θn−1 by t.
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By DIC, for all i, we may drop i’s type from i’s winning probability. Thus we write

φi(θ
n−1) for i’s winning probability when the types of the others are θn−1 ∈ T n−1.

Anonymity implies that φi(θ
n−1) is invariant to permutations of θn−1.

We use the following auxiliary claim.

Claim A.8. Let i ∈ {1, . . . , n}, t ∈ T , t′ ∈ T , and θn−1 ∈ T n−1. Then

n−1∑
j=1

(
φi(t, θ

n−1
−j )− φi(t

′, θn−1
−j )

)
= 0. (A.11)

Proof of Claim A.8. Let us arbitrarily label θn−1 as (θj)j∈N\{i}. Let us also fix an

arbitrary type θi ∈ T .

In an intermediate step, let j be distinct from i. For clarity, we spell out winning

probabilities as follows: φi(ri = t, rj = t′, r−ij = θ−ij) means i’s winning probability

when i reports t, j reports t′, and all remaining agents report θ−ij. A permutation

of i’s and j’s reports does not change the winning probabilities of the agents other

than i and j. Since the object is allocated with probability one, we have

φi(ri = t, rj = t′, r−ij = θ−ij) + φj(ri = t, rj = t′, r−ij = θ−ij)

=φi(ri = t′, rj = t, r−ij = θ−ij) + φj(ri = t′, rj = t, r−ij = θ−ij).

By rearranging the previous display, and by DIC, we obtain

φi(ri = t, rj = t′, r−ij = θ−ij)− φi(ri = t′, rj = t, r−ij = θ−ij)

=φj(ri = t′, rj = θj, r−ij = θ−ij)− φj(ri = t, rj = θj, r−ij = θ−ij).
(A.12)

Now consider summing (A.12) over all j ∈ {1, . . . , n}\{i}. This summation yields∑
j : j ̸=i

(φi(ri = t, rj = t′, r−ij = θ−ij)− φi(ri = t′, rj = t, r−ij = θ−ij)) (A.13)

=
∑
j : j ̸=i

(φj(ri = t′, rj = θj, r−ij = θ−ij)− φj(ri = t, rj = θj, r−ij = θ−ij)) . (A.14)

In (A.14), the profiles considered are all of the form (ri = t′, r−i = θ−i) and (ri =

t, r−i = θ−i), respectively. Note that by DIC we have φi(ri = t′, r−i = θ−i)− φi(ri =
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t, r−i = θ−i) = 0. Hence (A.14) equals

n∑
j=1

(φj(ri = t′, r−i = θ−i)− φj(ri = t, r−i = θ−i)) .

Since the object is always allocated, the term in the previous display equals 0. Hence

the sum in (A.13) equals∑
j : j ̸=i

(φi(ri = θi, rj = t′, r−ij = θ−ij)− φi(ri = θi, rj = t, r−ij = θ−ij)) = 0.

We now revert to our usual notation. By DIC, we may drop i’s report from φi. Since

φi is permutation-invariant with respect to N \ {i}, we may also write

φi(ri = θi, rj = t′, r−ij = θ−ij) = φi(t
′, θn−1

−j ) and

φi(ri = θi, rj = t, r−ij = θ−ij) = φi(t, θ
n−1
−j ).

Thus we obtain the desired equality
n−1∑
j=1

(
φi(t

′, θn−1
−j )− φi(t, θ

n−1
−j )

)
= 0.

In what follows, let i be an arbitrary agent. We show i’s winning probability is

constant in the reports of others. To that end, let us fix an arbitrary type t∗ ∈ T . For

all k ∈ {0, . . . , n − 1}, let T n−1
k denote the subset of profiles in T n−1 where exactly

k-many entries are distinct from t∗. Let pi denote i’s winning probability when all

other agents report t∗. We will show via induction over k that i’s winning probability

is equal to pi whenever the others report a profile in T n−1
k . This completes the proof

since T n−1 = ∪n−1
k=0T

n−1
k holds.

Base case k = 0. Immediate from the definitions of pi and T
n−1
0 .

Induction step. Let k ≥ 1. Let all θ̂n−1 ∈ ∪k−1
ℓ=0T

n−1
ℓ satisfy φi(θ̂

n−1) = pi. Letting

θn−1 ∈ T n−1
k be arbitrary, we show φi(θ

n−1) = pi.

By anonymity, we may assume that exactly the first k entries of θn−1 are distinct

from t∗. That is, there exist types t1, . . . , tk all distinct from t∗ such that θn−1 =

(t1, . . . , tk, t
∗, . . . , t∗).

Let θ̃n−1 = (t1, . . . , tk−1, t
∗, . . . , t∗). This profile is obtained from θn−1 by replacing
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tk by t∗. We now invoke Claim A.8 to infer

n−1∑
j=1

φi(tk, θ̃
n−1
−j ) =

n−1∑
j=1

φi(t
∗, θ̃n−1

−j ). (A.15)

Consider the profiles appearing in the sum on the left of (A.15) as j varies from

1 to n− 1.

(1) Let j ≤ k − 1. Since exactly the first k − 1 entries of θ̃ are distinct from t∗, it

follows that (tk, θ̃
n−1
−j ) is another profile where exactly k − 1 entries differ from

t∗. Hence the induction hypothesis implies φi(tk, θ̃
n−1
−j ) = pi.

(2) Let j > k − 1. In the profile (tk, θ̃
n−1
−j ), the first k − 1 entries are t1, . . . , tk−1,

the j’th entry is tk, and all remaining entries are t∗. Hence (tk, θ̃
n−1
−j ) is a

permutation of θn−1. Anonymity implies φi(tk, θ̃
n−1
−j ) = φi(θ

n−1).

Hence the sum on the left of (A.15) equals
n−1∑
j=1

φi(t, θ̃
n−1
−j ) = (k−1)pi+(n−k)φi(θ

n−1)

Now consider the sum on the right of (A.15). For all j, a moment’s thought

reveals that the profile (t∗, θ̃n−1
−j ) contains at most (k−1)-many entries different from

t∗. By the induction hypothesis, therefore, the sum on the right of (A.15) equals

(n− 1)pi.

The previous two paragraphs and (A.15) imply (k − 1)pi + (n − k)φi(θ
n−1) =

(n − 1)pi. Equivalently, (n − k)(φi(θ
n−1) − pi) = 0. Since k ≤ n − 1, we find

φi(θ
n−1) = pi, as promised.

A.3.2 Proof of Theorem 6.5

Proof of Theorem 6.5. We omit the straightforward verification that a jury mecha-

nism with an anonymous jury is partially anonymous.

For the converse, let φ be deterministic, partially anonymous, and DIC. Let N

denote the set of agents, and let T denote the common type space. For this proof,

we write φ(θ) to mean the agent who wins at profile θ; this makes sense since φ is

deterministic.

Let Ii denote the set of agents that influence agent i’s winning probability. For

all j ∈ N , let Aj = {i ∈ N : j ∈ Ii} be the set of agents that are influenced by j. Let

I = {i ∈ N : Ai ̸= ∅}. We may assume that φ is non-constant, meaning I ̸= ∅, as
otherwise the proof is trivial.
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Given two agents i and j, letDi−j = Ai\Aj, andDj−i = Aj\Ai, and Cij = Aj∩Ai,

and Nij = N \ (Ai ∪ Aj). Note that, by DIC, the set Cij contains neither i nor j.

Hence partial anonymity implies that for all k ∈ Cij the winning probability of k is

invariant with respect to permutations of i and j.

When i, j, and k are given, we write (t, t′, t′′, θ−ijk) to mean the profile where i,

j, and k, respectively, report t, t′, and t′′, respectively, and all others report θ−ijk.

Claim A.9. Let i and j be distinct. Let θ−ij ∈ Θ−ij. If there exists θi, θj ∈ T such

that φ(θi, θj, θ−ij) ∈ Di−j, then all θ′i, θ
′
j ∈ T satisfy φ(θ′i, θ

′
j, θ−ij) ∈ Di−j.

Proof of Claim A.9. We drop the fixed type profile θ−ij of the others from the nota-

tion. To show φ(θ′i, θ
′
j) ∈ Di−j, it suffices to show φ(θ′i, θj) ∈ Di−j since if the latter

is true then definition of Di−j implies φ(θ′i, θ
′
j) = φ(θ′i, θj).

We first claim φ(θj, θi) ∈ Di−j. If φ(θj, θi) ∈ Nij, then φ(θj, θi) = φ(θi, θj), and

we have a contradiction to φ(θi, θj) ∈ Di−j. If φ(θj, θi) ∈ Cij, then partial anonymity

implies φ(θi, θj) ∈ Cij, and we have another contradiction to φ(θi, θj) ∈ Di−j. If

φ(θj, θi) ∈ Dj−i, then φ(θj, θi) = φ(θi, θi) ∈ Dj−i. However, from φ(θi, θj) ∈ Di−j we

know φ(θi, θj) = φ(θi, θi) ∈ Di−j; contradiction. Thus φ(θj, θi) ∈ Di−j.

We next claim φ(θ′i, θj) ∈ (Di−j ∪ Cij). Towards a contradiction, suppose not.

Then φ(θ′i, θj) ∈ (Dj−i∪Nij), and hence φ(θ′i, θj) = φ(θi, θj) /∈ Di−j. This contradicts

the assumption φ(θi, θj) ∈ Di−j.

In view of the previous paragraph, we can complete the proof by showing φ(θ′i, θj) /∈
Cij. Towards a contradiction, let φ(θ

′
i, θj) ∈ Cij. Partial anonymity implies φ(θj, θ

′
i) ∈

Cij. We have shown earlier that φ(θj, θi) ∈ Di−j holds. Hence φ(θj, θ
′
i) ∈ Di−j, and

this contradicts φ(θj, θ
′
i) ∈ Cij. Thus φ(θ

′
i, θj) /∈ Cij and the proof is complete.

Claim A.10. Let i, j, k be distinct. Let θk ∈ T and θ−ijk ∈ Θ−ijk be such that all

θ′i, θ
′
j ∈ T satisfy φ(θ′i, θ

′
j, θk, θ−ijk) ∈ (Cij ∪ Nij). Then, all θ′i, θ

′
j, θ

′
k ∈ T satisfy

φ(θ′i, θ
′
j, θ

′
k, θ−ijk) ∈ (Cij ∪Nij).

Proof of Claim A.10. Towards a contradiction, suppose φ(θ′i, θ
′
j, θ

′
k, θ−ijk) ∈ (Di−j ∪

Dj−i). Suppose φ(θ′i, θ
′
j, θ

′
k, θ−ijk) ∈ Di−j, the other case being similar. The inclu-

sions φ(θ′i, θ
′
j, θk, θ−ijk) ∈ (Cij ∪ Nij) and φ(θ′i, θ

′
j, θ

′
k, θ−ijk) ∈ Di−j together imply

φ(θ′i, θ
′
j, θ

′
k, θ−ijk) ∈ Ak. Hence φ(θ′i, θ

′
j, θ

′
k, θ−ijk) ∈ Dk−j. We now invoke Claim A.9

to infer φ(θ′i, θ
′
j, θk, θ−ijk) ∈ Dk−j. Since we also have φ(θ′i, θ

′
j, θk, θ−ijk) ∈ (Cij ∪Nij),

we infer φ(θ′i, θ
′
j, θk, θ−ijk) ∈ Nij. In particular, we have φ(θ′i, θ

′
j, θk, θ−ijk) /∈ Ai. Hence
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φ(θ′i, θ
′
j, θk, θ−ijk) ∈ Dk−i. We now invoke Claim A.9 to infer φ(θ′i, θ

′
j, θ

′
k, θ−ijk) ∈ Dk−i.

In particular, we have φ(θ′i, θ
′
j, θ

′
k, θ−ijk) /∈ Ai. This contradicts the assumption

φ(θ′i, θ
′
j, θ

′
k, θ−ijk) ∈ Di−j.

Claim A.11. If Cij ̸= ∅, then Di−j ∪Dj−i = ∅.

Proof of Claim A.11. Let k ∈ Cij. We may find a profile θ such that φ(θ) = k as else

k’s winning probability is constantly 0 (which would contradict k ∈ Cij). Denoting

by θ−ij the types of agents other than i and j at θ, we appeal to Claim A.9 to infer

that all θ′i, θ
′
j ∈ T satisfy φ(θ′i, θ

′
j, θ−ij) ∈ (Cij∪Nij). Repeatedly applying Claim A.10

implies that all profiles θ′ satisfy φ(θ′) ∈ (Cij ∪ Nij). It follows that all agents in

Di−j ∪ Dj−i enjoy a winning probability that is constantly equal to 0. Recalling

the definitions Di−j = Ai \ Aj, and Dj−i = Aj \ Ai, it follows that Di−j ∪ Dj−i is

empty.

Recall the definition I = {i ∈ N : Ai ̸= ∅}. Consider the binary relation ∼ on I

defined as follows: Given i and j in I, we let i ∼ j if and only if Cij ̸= ∅.

Claim A.12. The relation ∼ is an equivalence relation. For all i, j ∈ I, if i ∼ j,

then i /∈ Aj and Ai = Aj.

Proof of Claim A.12. It is clear that ∼ is symmetric. As for reflexivity, note that

i ∈ I implies Ai = Cii ̸= ∅. Turning to transitivity, suppose i ∼ j and j ∼ k. Hence

Cij ̸= ∅ and Cjk ̸= ∅. Let ℓ ∈ Cjk. Claim A.11 and Cij ̸= ∅ together imply Dj−i = ∅.
Hence ℓ ∈ Cjk implies ℓ ∈ Cij. Hence ℓ ∈ Cjk ∩ Cij, implying ℓ ∈ Cik. Hence i ∼ k.

As for the second part of the claim, let i ∼ j. Thus Cij ̸= ∅. Claim A.11 implies

Dj−i = Di−j = ∅. This immediately implies Ai = Aj. Together with DIC, we also

infer i /∈ Aj.

Claim A.12 implies that we may partition I into finitely-many non-empty ∼-

equivalence classes. (Recall that I is non-empty.) We now claim that there is ex-

actly one ∼-equivalence class. Towards a contradiction, suppose not. In view of

Claim A.12, this means that there are distinct i and j such that Ai ∩ Aj = ∅ and

Ai ̸= ∅ ≠ Aj. Let Ji and Jj, respectively, denote the equivalence classes containing

i and j, respectively. Let k ∈ Ai and ℓ ∈ Aj. Claim A.12 implies k /∈ Ji and ℓ /∈ Jj

and k ̸= ℓ. Since k ∈ Ai and φ is deterministic, there is a type profile θ such that

φ(θ) = k; there must be another type profile θ′ such that φ(θ′) = ℓ. However, the
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definition of equivalence classes implies that k’s winning probability depends only

on the types of agents in Ji, and that ℓ’s winning probability depends only on the

types of agents in Jj. Hence there is a type profile where both k and ℓ are winning

with probability 1 (such a type profile is obtained by changing at the profile θ the

types of agents in Jj to their respective types at θ′, and keeping all other types fixed).

Contradiction.

Now, Claim A.12 implies that the members of the unique ∼-equivalence class do

not influence one another, and that they influence the same set of others. By partial

anonymity, it follows φ that is a deterministic jury mechanism with an anonymous

jury.

A.3.3 Proof of Proposition 6.6

We first give an informal sketch of the proof. The idea is to “symmetrize” the

stochastic extreme point φ∗ from Section 5.2.

In Section 5.2, there are four agents, the set of type profiles of agents 1 to 3 is a

2 × 2 × 3 set Θ̂, and agent 4 has a singleton type space. Let us view allocating to

agent 4 as disposing the object. Let us relabel the types of agents 1 to 3 so that they

are all distinct. Across agents 1 to 3 we thus have a set T of seven distinct types.

The 3-fold Cartesian product T 3 of T with itself contains six permutations of Θ̂ (one

for each permutation of {1, 2, 3}). In Figure 2, the common type space is labelled

T = {1, . . . , 7}, and the six permutations of Θ̂ are depicted via six symbols (square,

circle, etc.).

We can associate to each permutation of Θ̂ a permutation of the mechanism φ∗.

The idea is to extend these permutations to a DIC mechanism with disposal on all of

T 3. The difficulty is to verify that the resulting mechanism is well-defined. To see the

issue, reconsider Figure 2. For each of the six subsets, imagine rays emanating from

the subset and travelling parallel to the axes. Along the ray, exactly one agent’s type

changes. Hence DIC requires that this agent’s winning probability remain constant

along the ray. The rays emanating from distinct subset intersect, and we have verify

that the sum of the associated winning probabilities does not exceed 1. We use two

observations. The first is that, at most two such rays intersect simultaneously; this is

a consequence of the fact that the types in Θ̂ are distinct across agents. The second

is that the winning probabilities associated with the rays are at most 1
2
; this is a

consequence of the construction of φ∗ in Section 5.2.
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Proof of Proposition 6.6. We first prove part (2) of the claim, assuming for a moment

that part (1) is true. Let ψ∗ : T 3 → [0, 1]3 be a mechanism with disposal for three

agents that meets the conclusion of part (1). We view ψ∗ as a mechanism (without

disposal) with four agents that ignores the report of agent 4, and where agent 4’s

winning probability equals the probability that ψ∗ does not allocate the object to

the first three agents. Using the assumed properties of ψ∗, we obtain a mechanism

without disposal that is DIC, partially anonymous, and an extreme point of the set

of DIC mechanisms without disposal for four agents.

It remains to prove part (1) of the claim. That is, we show that if n = 3, then

there is an anonymous DIC mechanism with disposal that is an extreme point of the

set of all DIC mechanisms with disposal.

Let us relabel the common type space as T = {1, 2, 3, 4, 5, 6, 7}. Let T 3 = ×3
i=1T

denote the 3-fold Cartesian product of T . Let T1 = {1, 2}, T2 = {3, 4} and T3 =

{5, 6, 7} and Θ̂ = T1 × T2 × T3. In Section 5.2, we constructed a stochastic DIC

mechanism φ∗ without disposal in a setting with 4 agents, where the types of agents

1, 2, and 3, respectively, are {ℓ, r}, {u, d}, {f, c, b}, respectively, and where agent 4’s

type is degenerate. By relabeling types, we view φ∗ as a mechanism with disposal

with 3 agents on the set of type profiles Θ̂, and where allocating to agent 4 is identified

with disposing the object. The arguments from Section 5.2 show that, if n = 3 and

the set of type profiles is Θ̂, then φ∗ is an extreme point of the set of DIC mechanisms

with disposal.

For later reference, we note that, at all type profiles θ ∈ Θ̂ and all i ∈ {1, 2, 3},
agent i’s winning probability at θ under φ∗ is either 0 or 1/2.

Our candidate mechanism will be denoted ψ∗. Let Ξ denote the set of permu-

tations of {1, 2, 3}. Let Θ∗ = {ξ(θ) : θ ∈ Θ̂, ξ ∈ Ξ} denote the set of type profiles

obtained by permuting a type profile in Θ̂; see Figure 2. Fixing an arbitrary type

profile in Θ̂, the types of the agents at this type profile are all distinct. Consequently,

for all θ∗ in Θ∗ there is a unique profile θ in Θ̂ and ξ in Ξ such that θ∗ = ξ(θ).

For later reference, we also note that at an arbitrary type profile in Θ∗, the types

of distinct agents must belong to distinct elements of the partition {T1, T2, T3}.
We define ψ∗ as follows: For all θ∗ in Θ∗, we find the unique (θ, ξ) ∈ T × Ξ such

that θ∗ = ξ(θ), and then let

(ψ∗
i (θ

∗))ni=1 =
(
φ∗
ξ(i)(ξ(θ))

)n
i=1

. (A.16)
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Figure 2: The set Θ∗ viewed from two different angles. Each agent is associated with
a distinct axis. Each symbol (square, circle, upward-pointing triangle, etc.) identifies
a particular permutation of {1, 2, 3}. For instance, the upward-pointing triangles are
obtained from the downward-pointing triangles by permuting the two agents on the
horizontal axes.

For the remaining profiles, we proceed as follows: For all agents i and profiles θ, if θ

differs from at least one profile θ∗ in Θ∗ in agent i’s type and no other agent’s type,

then i’s winning probability at θ equals i’s winning probability at θ∗ (which makes

sense since the latter probability has already been defined in (A.16)); else, if no such

profile θ∗ in Θ∗ exists, then agent i’s winning probability is set equal to 0.

To complete the argument, we have to show that ψ∗ is well-defined, DIC, stochas-

tic, anonymous, and an extreme point of the set of DIC mechanisms with disposal.

Assuming for a moment that the mechanism is well-defined, it is clear that the mech-

anism is stochastic, and one can easily verify from the definition that it is DIC and

anonymous. To show that it is an extreme point of the set of DIC mechanisms, we

proceed via the arguments from Section 5.2. Indeed, we know from Section 5.2 that

all DIC mechanisms ψ with disposal that appear in a candidate convex combination

must agree with ψ∗ on Θ̂, and hence on Θ∗. It is then straightforward to verify that

such a mechanism ψ must also agree with ψ∗ on Θ \Θ∗.

It remains to show that ψ∗ is well-defined. Towards a contradiction, suppose

there is a profile θ = (θ1, θ2, θ3) in Θ such that
∑3

i=1 ψ
∗
i (θ) > 1. By construction,

all i ∈ {1, 2, 3} satisfy ψ∗
i ∈ {0, 1

2
}. Hence all three agents enjoy non-zero winning

probabilities at θ. By definition of ψ∗, we can infer the following: Since agent 1’s

winning probability at θ is non-zero, there exists t1 such that (t1, θ2, θ3) ∈ Θ∗. Simi-
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larly, there are t2 and t3 such that (θ1, t2, θ3) ∈ Θ∗ and (θ1, θ2, t3) ∈ Θ∗. Recall that

{T1, T2, T3} is a partition of T . Hence, for all agents i, there is a unique integer ξ(i)

in {1, 2, 3} such that θi ∈ Tξ(i). We now recall that if a profile is in Θ∗, then the types

of distinct agents belong to distinct elements of the partition {T1, T2, T3}. Hence we

infer from (t1, θ2, θ3) ∈ Θ∗ that ξ(2) ̸= ξ(3) holds. Similarly, from (θ1, t2, θ3) ∈ Θ∗

and (θ1, θ2, t3) ∈ Θ∗ we infer ξ(1) ̸= ξ(2) and ξ(1) ̸= ξ(3). Taken together, we infer

θ ∈ Θ∗. Hence the vector of winning probabilities at θ is a permutation of the vector

of winning probabilities at a profile θ′ in Θ̂. At the profile θ′, the winning probabili-

ties under ψ∗ agree with φ∗. Thus there is a profile where the winning probabilities

under φ∗ sum to a number strictly greater than 1. This contradicts the fact that φ∗

is a well-defined mechanism on Θ̂.

Appendix B Supplementary material: Disposal

In this part of the appendix, we relax the requirement that the object always be

allocated. An intepretation is that the mechanism designer can dispose or privately

consume the object. Accordingly, we refer to such mechanisms as mechanisms with

disposal. We discuss how this affects our results from the main text (Appendix B.1).

Further, we show how the existence of stochastic extreme points of the set of DIC

mechanisms with disposal can be related to a certain graph (Appendix B.2).

Beginning with the definitions, a mechanism with disposal is a function φ : Θ →
[0, 1]n satisfying

∀θ∈Θ,
n∑

i=1

φi(θ) ≤ 1.

A mechanism from the main text will be referred to as a mechanism with no disposal.

If there is no risk of confusion, we will drop the qualifiers “with disposal” or “with

no disposal”.

A mechanism with disposal is DIC if and only if for arbitrary i the winning

probability φi is constant in i’s report. We will sometimes drop i’s report θi from

φi(θi, θ−i).

A jury mechanism with disposal is defined as in the basic model: For all i, if agent

i influences the allocation, then i never wins the object.
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We normalize the value from not allocating the object to 0.

A mechanism with n agents and disposal can be viewed as a mechanism with no

disposal and with n+1 agents where agent n+1 has a singleton type space; the value

from allocating to n+1 is always 0. Likewise, if there are other agents with singleton

type spaces, we can always renormalize values and view allocating to one of these

agents as disposing the object. In what follows, whenever considering mechanisms

with disposal, let us thus simplify by assuming that no agent has a singleton type

space; that is, for all agents i we have |Θi| ≥ 2.

B.1 Results from the main text

Here we discuss how our results change when the mechanism can dispose the object.

To begin with, we have the following analogue of Theorem 5.1.

Theorem B.1. Fix n and Θ1, . . . ,Θn. For all agents i, let |Θi| ≥ 2. All extreme

points of the set of DIC mechanisms with disposal are deterministic if and only if at

least one of the following is true:

(1) We have n ≤ 2.

(2) For all agents i we have |Θi| = 2.

Proof of Theorem B.1. As discussed above, a DIC mechanism with n agents and

disposal is a DIC mechanism with n + 1 agents and no disposal. The claim follows

from Theorem 5.1.

Further below, we provide an alternative proof of Theorem B.1 that does not

invoke Theorem 5.1 but relies on graph-theoretic results. We emphasize that Theo-

rem B.1 does not imply Theorem 5.1. Namely, we cannot conclude from Theorem B.1

that if n = 3 all extreme points of the set of DIC mechanisms with no disposal are

deterministic.

It follows from Theorem B.1 that Theorem 4.1 (jury mechanisms with 3 agents)

carries over to mechanisms with disposal in the sense that all mechanisms with dis-

posal and 2 agents are convex combinations of deterministic jury mechanisms with

disposal. Note that, according to Theorem B.1, this result does not extend to n = 3.

With n = 2, a jury mechanism with disposal admits a single juror whose report

determines whether or not the object is disposed or allocated to the other agent.
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Proposition 5.2 (on the suboptimality of deterministic DIC mechanisms) analo-

gizes straightforwardly to mechanisms with disposal. Indeed, note that in our proof

of Proposition 5.2 agent 4 was simply a dummy agent with value normalized to 0.

Theorem 4.4 (approximate optimality of jury mechanisms under Assumption 1

and large n) extends to mechanisms with disposal in a straightforward way, with no

changes to the proof.

We already showed via Proposition 6.6 that Theorem 6.2 does not extend to mech-

anisms with disposal. In fact, the non-constant mechanism constructed in the proof

of Proposition 6.6 actually satisfies an even stronger notion of anonymity. Namely,

whenever one permutes the type profiles, the vector of winning probabilities is per-

muted in the same manner.

We next turn to partial anonymity for mechanisms with disposal. In particular,

we show that Theorem 6.5 extends under a slight strengthening of partial anonymity.

Given a mechanism φ, let φ0 = 1−
∑n

i=1 φi denote the probability that the object is

not allocated.

Definition 4. Let φ be a mechanism with disposal. Let N = {1, . . . , n} and N0 =

N ∪ {0}.
(1) Given distinct i ∈ N and k ∈ N0, agent i influences k if φk is non-constant in

i’s report.

(2) The mechanism is partially ∗-anonymous if for all i ∈ N , j ∈ N , and k ∈ N0

that are all distinct and are such that i and j influence k, agents i and j are

exchangeable for k.

In words, partial anonymity is strengthened by demanding that the disposal prob-

ability φ0 is permutation-invariant with respect to those agents who influence φ0.

It follows from Theorem 6.5 that a deterministic partially ∗-anonymous DIC mech-

anism with disposal is a deterministic jury mechanism with an anonymous jury. To

see this, let us view disposing the object as allocating to agent 0. Now, agent 0

does not have the same type space as the other agents. Since this was a maintained

assumption of Section 6, we cannot yet appeal to Theorem 6.5. But, we can simply

view the mechanism as a mechanism where agent 0’s type space is same as the type

spaces of the others, and where agent 0’s report is always ignored. By now appealing

to Theorem 6.5, the claim follows.
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B.2 Stochastic extreme points and perfect graphs

In this section, we relate the existence of stochastic extreme points with disposal to

a graph-theoretic property called perfection.

B.2.1 Preliminaries

We first recall several definitions for a simple undirected graph G with nodes V and

edges E.

An induced cycle of length k is a subset {v1, . . . , vk} of V such that, denoting

vk+1 = v1, two nodes vℓ and vℓ′ in the subset are adjacent if and only if |ℓ− ℓ′| = 1.

The line graph of G is the graph that has as node set the edge set of G; two nodes

of the line graph are adjacent if and only if the two associated edges of G share a

node in G.

A clique of G is a set of nodes such that every pair in the set are adjacent. A clique

is maximal if it is not a strict subset of another clique. A stable set of G is a subset

of nodes of which no two are adjacent. The incidence vector of a subset of nodes V̂

is the function x : V → {0, 1} that equals one on V̂ and equals zero otherwise. Let

S(G) denote the set of incidence vectors belonging to some stable set of G.

The upcoming result uses another property of graphs called perfection. For our

purposes, it will be enough to know the following facts, all of which may be found in

Korte and Vygen (2018).

Lemma B.2. All bi-partite graphs and line graphs of bi-partite graphs are perfect. If

a graph admits an induced cycle of odd length greater than five, then it is not perfect.

Our interest in perfect graphs is due to the following theorem of Chvátal (1975,

Theorem 3.1); one may also find it in Korte and Vygen (2018, Theorem 16.21).

Theorem B.3. A graph G with node set V and edge set E is perfect if and only if

the convex hull coS(G) is equal to the set{
x : V → [0, 1] : all maximal cliques X of G satisfy

∑
v∈X

x(v) ≤ 1

}
. (B.1)

The set coS(G) is the stable set polytope of G. The set in (B.1) is the clique-

constrained stable set polytope of G.
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B.2.2 The feasibility graph

We next define a graph G such that the set of deterministic DIC mechanisms with

disposal corresponds to S(G), and such that the set of all DIC mechanisms with

disposal coincides with the clique-constrained stable set polytope of G. In view

of Theorem B.3, the question of whether all extreme points are deterministic thus

reduces to checking whether G is a perfect graph.

Consider the following graph G with node set V and edge set E. Let

V = ∪n
i=1 ({i} ×Θ−i) ,

and let two nodes (i, θ−i) and (j, θ′−j) be adjacent if and only if i ̸= j and there is

a type profile θ̂ satisfying θ̂−i = θ−i and θ̂−j = θ′−j. We refer to G as the feasibility

graph.

Informally, a node (i, θ−i) is the index for agent i’s winning probability when the

type profile of the others is θ−i. Two nodes are adjacent if and only if there is a

profile θ̂ such that the associated winning probabilities simultaneously appear in the

feasibility constraint

n∑
i=1

φi(θ̂−i) ≤ 1 (B.2)

of the profile θ̂.

Figure 3 shows the feasibility graph in an example with two agents; Figure 4

shows it in an example with three agents.

Given a node v = (i, θ−i) of G, let us write φ(v) = φi(θ−i). Note that a clique

in the feasibility graph is a subset of nodes of V such that the winning probabilities

associated with these nodes all appear in the same feasibility constraint (B.2). It

follows that there is a one-to-one mapping between maximal cliques of G and type

profiles. For a DIC mechanism with disposal, the feasibility constraint (B.2) may

thus be equivalently stated as follows: For all maximal cliques of X of G, we have∑
v∈X φ(v) ≤ 1. Thus the set of DIC mechanisms with disposal coincides with the

set (B.1). One may similarly verify that the set of deterministic DIC mechanisms

with disposal coincides with S(G). In view of Theorem B.3, we deduce:

Lemma B.4. All extreme points of the set of DIC mechanisms with disposal are
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(a) The set of type profiles Θ. Cir-
cles represent type profiles.

(1, u)

(2,ℓ)

(1, d)

(2, m) (2, r)

(b) The graph G. Red triangles rep-
resent nodes of G that are associated
with agent 1. Blue squares represent
nodes associated with agent 2.

Figure 3: There are two agents with types Θ1 = {ℓ,m, r} and Θ2 = {u, d}.

deterministic if and only if G is perfect.

This leads us to the following alternative proof of Theorem B.1.

Alternative proof of Theorem B.1. Let n = 2. Observe that the node set of G may

be partitioned into the sets {1} ×Θ2 and {2} ×Θ1. By definition, two nodes (i, θ−i)

and (j, θ−j) are adjacent only if i ̸= j. Thus G is bi-partite. Since every bi-partite

graph is perfect (Lemma B.2), the claim follows from Theorem B.3.

Suppose |Θi| = 2 holds for all i. We may relabel the types so that Θi = {0, 1}
holds for all i. In this case G is the line graph of a bi-partite graph; namely the

bi-partite graph with node set {0, 1}n and where two nodes are adjacent if and only

if they differ in exactly one entry. The line graph of a bi-partite graph is perfect

(Lemma B.2), and so the claim again follows from Theorem B.3.

Lastly, suppose n ≥ 3 and |Θi| > 2 for at least one i. We will show that G admits

an odd induced cycle of length seven. In view of Lemma B.2 and Theorem B.3, this

proves that there exists a stochastic extreme point. Let us relabel the agents and

types such that the type spaces contain the following subsets of types:

Θ̃1 = {ℓ, r} and Θ̃2 = {u, d} and Θ̃3 = {f, c, b}

all hold. Let θ−123 be an arbitrary type profile of agents other than 1, 2 and 3

(assuming such agents exist). One may verify that the following is an induced cycle
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Figure 4: The feasibility graph G in an example with three agents. Agents 1 and
2 each have two possible types. The nodes of G associated with agents 1 and 2,
respectively, are depicted by red triangles and blue squares, respectively. Agent 3
has three possible types; the associated nodes are depicted by green circles. One may
view this as the graph G associated with the four-agent environment of Section 5.2,
except that all nodes of the dummy agent 4 are omitted.

of length seven:

(2, (ℓ, c, θ−123)) ↔ (1, (d, c, θ−123))

↔ (3, (r, d, θ−123))

↔ (2, (r, b, θ−123))

↔ (3, (r, u, θ−123))

↔ (1, (u, f, θ−123))

↔ (3, (ℓ, u, θ−123))

↔ (2, (ℓ, c, θ−123)) .
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The proof in the main text for the existence of a stochastic extreme point is

slightly more elaborate than the one given above since in the former we explicitly

spell out the extreme point. (The proof in the main text uses one of the agents as

a dummy, and therefore also works for mechanisms with disposal.) In our view, the

advantage of the more elaborate argument is that it facilitates the construction of

environments where all deterministic DIC mechanisms fail to be optimal. This lets

us give an interpretation as to why it may be optimal to use a lottery. That said,

it is clear how the induced cycle defined in the proof of Theorem B.1 relates to the

construction from the main text. The nodes of the cycle correspond to the bold edges

of the hyperrectangle in Figure 1.

Appendix C Supplementary material: Additional

results

C.1 All extreme points are candidates for optimality

For the following lemma, observe that the set of DIC mechanisms depends only on

the number of agents and their type spaces.

Lemma C.1. Let n ∈ N. Let Θ1, . . . ,Θn be finite sets, and let Θ = ×n
i=1Θi. If φ is

an extreme point of the set of DIC mechanisms when there are n agents and the set

of type profiles is Θ, then there exists a set Ω of value profiles and a distribution µ

over Ω×Θ such that in the environment (n,Ω,Θ, µ) the mechanism φ is the unique

optimal DIC mechanism.

Proof of Lemma C.1. The set of DIC mechanisms is a polytope in Euclidean space

(being the set of solutions to a finite system of linear inequalities). Hence all its

extreme points are exposed (Aliprantis and Border, 2006, Corollary 7.90). Hence

there is a function p : {1, . . . , n} × Θ → R such that for all DIC mechanisms ψ

different from φ we have
∑

i,θ pi(θ)(φi(θ) − ψi(θ)) > 0. By suitably choosing Ω and

µ, the function p represents the objective function of our model. For example, one

possible choice of Ω and µ is as follows: Let the marginal of µ on Θ be uniform; for all

agents i, let Ωi be the image of pi; for all θ, conditional on the type profile realizing

as θ, let the value of allocating to agent i be |Θ|pi(θ).
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C.2 Implementation with deterministic outcome functions

An indirect mechanism specifies a tuple M = (M1, . . . ,Mn) of finite message sets,

and an outcome function g : ×i Mi → ∆{0, . . . , n}. (Given a finite set X, we denote

by ∆X the set of distributions over X.) The outcome function is deterministic if

for all m the distribution g(m) is degenerate. A strategy of agent i in (M, g) is a

function σi : Θ → ∆Mi; let Σi denote the set of strategies of agent i in (M, g). A

DIC mechanism φ is implementable (in dominant strategies) via (M, g) if there is a

dominant-strategy equilibrium (σ1, . . . , σn) of (M, g) such that all profiles θ satisfy

φ(θ) =
∑

m g(m)
∏

i σi(mi|θi).

Lemma C.2. If a stochastic DIC mechanism φ is implementable via an indirect

mechanism with a deterministic outcome function, then φ is not an extreme point of

the set of DIC mechanisms.

Proof of Lemma C.2. Towards a contradiction, suppose φ is an extreme point. As

in the proof of Lemma C.1, we may find p : {1, . . . , n} × Θ → R such that all DIC

mechanisms ψ distinct from φ satisfy
∑

i,θ pi(θ)(φi(θ)−ψi(θ)) > 0. However, since φ

is implementable via an indirect mechanism with a deterministic outcome function,

Proposition 1 of Jarman and Meisner (2017) implies that there is a deterministic DIC

mechanism ψ such that

∀θ∈Θ,
∑
i

pi(θ)(φi(θ)− ψi(θ)) ≤ 0.

Hence
∑

i,θ pi(θ)(φi(θ)−ψi(θ)) ≤ 0. Since φ is stochastic, we have ψ ̸= φ; contradic-

tion.

C.3 Total unimodularity

This section of the appendix discusses another potential approach for showing that

all extreme points are deterministic. Our aim is to explain why this approach does

not help us for the proof of Theorem 5.1 in the difficult case with three agents.

For a function φ : Θ → [0, 1]n to be a DIC mechanism, the function should satisfy
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the following:

∀i,θ, 1 ≥ φi(θ)

∀i,θi,θ′i,θ−i
, 0 ≥ φi(θi, θ−i)− φi(θ

′
i, θ−i) ≥ 0

∀θ, 1 ≥
∑
i

φi(θ) ≥ 1

(C.1)

For a suitable matrix A and vector b, the set of DIC mechanisms is then the poly-

tope {φ : Aφ ≥ b, φ ≥ 0}. Here, the matrix A has one row for every constraint in

(C.1) (after splitting the constraints into one-sided inequalities). Each column of A

identifies a pair of the form (i, θ).

A matrix or a vector is integral if its entries are all in Z. A polytope is integral if

all its extreme points are integral. In this language, all extreme points of the set of

DIC mechanisms are deterministic if and only if the polytope {φ : Aφ ≥ b, φ ≥ 0} is

integral.

Recall that a matrix is totally unimodular if all its square submatrices have a

determinant equal to −1, 0, or 1. A submatrix of a totally unimodular matrix is

itself totally unimodular.

Our interest in total unimodularity is due the Hoffman-Kruskal theorem (Korte

and Vygen, 2018, Theorem 5.21).

Theorem C.3. An integral matrix A is totally unimodular if and only if for all

integral vectors b all extreme points of the set {φ : Aφ ≥ b, φ ≥ 0} are integral.

Thus a sufficient condition for all extreme points of the set of DIC mechanisms

to be deterministic is that the constraint matrix A be totally unimodular. Unfortu-

nately:

Lemma C.4. For all agents i, let |Θi| ≥ 2. Let n = 3. If there exists i such that

|Θi| ≥ 3, then A is not totally unimodular.

Proof of Lemma C.4. Towards a contradiction, supposeA is totally unimodular. Con-

sider the constraint matrix Ã and vector b̃ that define the set of DIC mechanisms with

disposal (where such mechanisms are defined in Appendix B). That is, φ is a DIC

mechanism with disposal if and only if Ãφ ≥ b̃ and φ ≥ 0. Notice that Ã is obtained

from A by dropping all rows corresponding to constraints of the form
∑

i φi(θ) ≥ 1;

the vector b̃ is obtained from b by dropping the corresponding entries. In particular,
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the matrix Ã is a submatrix of A. Since A is totally unimodular, we conclude that Ã

is totally unimodular. We infer from Theorem C.3 that all extreme points of the set

of DIC mechanism with disposal are deterministic. Since n = 3, since all agents have

at least binary types, and since at least one agent has non-binary types, we have a

contradiction to Theorem B.1.

We can give an alternative proof of Lemma C.4 that does not require Theorem B.1.

Consider the following characterization of total unimodularity due to Ghouila-Houri

(1962) (Korte and Vygen, 2018, Theorem 5.25).

Theorem C.5. A matrix A with entries in {−1, 0, 1} is totally unimodular if and

only if all subsets C of columns of A satisfy the following: There exists a partition of

C into subsets C+ and C− such that for all rows r of A we have(∑
c∈C+

A(r, c)−
∑
c∈C−

A(r, c)

)
∈ {−1, 0, 1}. (C.2)

Alternative proof of Lemma C.4. Let us relabel the agents and types such that the

type spaces contain the following subsets:

Θ̃1 = {ℓ, r} and Θ̃2 = {u, d} and Θ̃3 = {f, c, b}

Fixing an arbitrary type profile θ−123 of agents other than 1, 2, and 3, let us define

the type profiles {θa, θb, θc, θe, θf , θg} as in (5.2) in Section 5.2. That is, let

θa = (ℓ, d, c, θ−123), θb = (r, d, c, θ−123), θc = (r, d, b, θ−123),

θd = (r, u, b, θ−123), θe = (r, u, f, θ−123),

θf = (ℓ, u, f, θ−123), θg = (ℓ, u, c, θ−123).

Recall that each column of A corresponds to an entry of the form (i, θ). We will

argue that the following set C of columns does not admit a partition in the sense of
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Theorem C.5.

C = {(1, θa), (1, θb), (3, θb), (3, θc),

(2, θc), (2, θd), (3, θd), (3, θe),

(1, θe), (1, θf ), (3, θf ), (3, θg),

(2, θg), (2, θa)}

Towards a contradiction, suppose C does admit a partition into sets C+ and C− in the

sense of Theorem C.5. Let us assume (1, θa) ∈ C+, the other case being similar. Note

that θa and θb differ only in the type of agent 1. Consider the row of A corresponding

to the DIC constraint for agent 1 at these type profiles. By referring to (C.2) for this

row, we deduce (1, θb) ∈ C+. Next, via a similar argument, the constraint that the

object is allocated at θb requires (3, θb) ∈ C−. Continuing in this manner, it is easy

to see that (1, θa) must be in C−. Since (1, θa) is assumed to be in C+, we have a

contradiction to the assumption that C+ and C− are a partition of C.

C.4 Maximum weight perfect hypergraph matching

In this section, we explain that the problem of finding an optimal deterministic DIC

mechanism corresponds to finding a maximum weight perfect matching on a certain

hypergraph.

The hypergraph has as vertices the set of type profiles. Its hyperedges are those

type profiles along which the type of exactly one agent i varies across Θi. That is,

a set of type profiles e is a hyperedge if and only if there exist i ∈ {1, . . . , n} and

θ−i ∈ Θ−i such that e = {(θi, θ−i) : θi ∈ Θi}. We index this hyperedge by (i, θ−i).

The weight attached to hyperedge (i, θ−i) is Eωi
[ωi|θ−i].

In a matching of this hypergraph, including edge (i, θ−i) in the matching corre-

sponds to allocating to agent i at all type profiles incident to (i, θ−i); this respects

DIC for agent i. In a perfect matching, each type profile is covered by some edge;

this respects the requirement that the object is always allocated.

If we relax the requirement that the object is always allocated (Appendix B), we

instead consider the larger set of all matchings on the hypergraph. Such a matching

can also be interpreted as a stable set of the feasibility graph introduced in Ap-

pendix B.2.2.
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ner with Impartial Referees”. url: https://www.sites.google.com/site/

francisbloch1/papers.

Bloch, Francis and Matthew Olckers (2021). “Friend-based ranking in practice”. In:

AEA Papers and Proceedings. Vol. 111, pp. 567–71.

56

https://doi.org/10.1007/3-540-29587-9
https://doi.org/10.1007/3-540-29587-9
https://sites.google.com/site/leoniebaumann/
https://sites.google.com/site/leoniebaumann/
https://www.sites.google.com/site/francisbloch1/papers
https://www.sites.google.com/site/francisbloch1/papers


Bloch, Francis and Matthew Olckers (2022). “Friend-based ranking”. In: American

Economic Journal: Microeconomics 14.2, pp. 176–214.

Bousquet, Nicolas, Sergey Norin, and Adrian Vetta (2014). “A near-optimal mecha-

nism for impartial selection”. In: International Conference on Web and Internet

Economics. Springer, pp. 133–146.

Budish, Eric, Yeon-Koo Che, Fuhito Kojima, and Paul Milgrom (2013). “Designing

random allocation mechanisms: Theory and applications”. In:American Economic

Review 103.2, pp. 585–623.

Caragiannis, Ioannis, George Christodoulou, and Nicos Protopapas (2019). “Impartial

selection with additive approximation guarantees”. In: International Symposium

on Algorithmic Game Theory. Springer, pp. 269–283.

— (2021). “Impartial selection with prior information”. In: arXiv preprint arXiv:2102.09002.

Chakravarty, Surajeet and Todd R Kaplan (2013). “Optimal allocation without trans-

fer payments”. In: Games and Economic Behavior 77.1, pp. 1–20.

Chen, Yi-Chun, Wei He, Jiangtao Li, and Yeneng Sun (2019). “Equivalence of Stochas-

tic and Deterministic Mechanisms”. In: Econometrica 87.4, pp. 1367–1390.

Chvátal, Vašek (1975). “On certain polytopes associated with graphs”. In: Journal

of Combinatorial Theory, Series B 18.2, pp. 138–154.

Condorelli, Daniele (2012). “What money can’t buy: Efficient mechanism design with

costly types.” In: Games and Economic Behavior 75.2, pp. 613–624.
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